Ранние гены фага лямбда

Добавил пользователь Skiper
Обновлено: 20.09.2024

говые частицы в результате случайных столкновений с клетками бактерий прикрепляются к последним (адсорбируются). Адсорбция про-исходит на рецепторах, имеющихся в наружной мембране бактерий E.coli. За адсорбцией следует стадия инъекции или введения ДНК в клетку. Бактериофаговый лизоцим разрушает клеточную стенку бак-терий и с помощью энергии, регенерируемой АТФ-азой, происходит сокращение чехла бактериофага. При этом прокалывается цитоплазматическая мембрана, полый стержень входит в бактериальную клетку и ДНК фага впрыскивается в нее. Инъецированная ДНК вызывает полную перестройку метаболизма бактериальной клетки: прекращается синтез бактериальной ДНК, бактериальных РНК и белков. ДНК бактериофага начинает транскрибироваться с помощью собственного фермента транскриптазы, который после попадания в бактериальную клетку активируется. Синтезируются сначала ранние информационные РНК, а затем поздние. Инфорационные РНК поступают на рибосомы клетки-хозяина, где синте-зируются ранние (ДНК-полимеразы, нуклеазы) и поздние (белки кап-сида и хвостового отростка, ферменты лизоцим, АТФ-аза и транскриптаза) белки бактериофага. Репликация ДНК бактериофага происходит по полуконсервативному механизму и осуществляется с участием собственных ДНК-полимераз. После того, как произошел синтез поздних белков и завершилась репликация ДНК, наступает заключительный процесс – созревание фаговых частиц или соединение фаговой ДНК с белком оболочки и образование зрелых инфекционных фаговых частиц. Созревание Т-четных фагов – сложный многоступенчатый процесс. Сначала образуются капсиды, наполненные внутри белками. После растворения этих внутренних белков готовые головки заполняются ДНК в определенном количестве, зависящем от типа фага, и закрываются. На завершающей стадии происходит присоединение компонентов отростка

и образуются зрелые фаговые частицы, которые после лизиса клеткихозяина под действием лизоцима бактериофага высвобождаются. Оказавшись во внешней среде, они могут адсорбироваться на чувствительных клетках и повторять весь процесс инфекции. Литический цикл фага Т4 длится обычно 25 мин.

9.Генетическая организация фага лямбда

Колифага λ - это сложный фаг, содержащий линейную двухцепочечную ДНК. На 5/-конце каждой ее цепи имеется одноцепочечная последовательность из 12 нуклеотидов – липкие концы (cos-сайты). Сразу же после проникновения фаговой ДНК в бактериальную клетку, липкие концы ДНК ковалентно соединяются ДНК-лигазой клетки-хозяина и образуется кольцевая молекула. Далее, как правило, эта кольцевая молекула бактериофаговой ДНК не приступает к транскрипции, а встраивается в бактериальную хромосому. Установлено, что гены фага λ кодируют синтез четырех регуляторных белков, один из которых репрессорный белок сI (кодируется геном сI) блокирует развитие событий литического цикла, а антирепрессорный белок Cro (кодируется геном сro), наоборот, запускает их. После поступления ДНК фага λ в клетку, выбор между литическим и лизогенным путями развития зависит от относительной скорости накопления регуляторных белков: если преобладает антирепрессорная функция белка Cro, то развиваются события литического цикла, если успевает проявиться функция репрессорного белка сI, литический цикл не осуществляется, так как белок сІ связывается с ДНК фага λ вособых участках, препятствуя транскципции фаговых генов. Встраивание ДНК фага λ в бактериальную хромосому осуществляется согластно интегративной модели А.Кемпбелла. Этот процесс называется сайт-специфической рекомбинацией, так как встраивание ДНК фага λ осуществляется в одном и том же месте (сайте) между генами gal и bio и не зависит от rec A-системы бактериальной клетки. За интеграцию ДНК фага λ ответственен фермент лямбда-интег-раза. Этот фермент узнает две разные последовательности – одну в хромосомной ДНК (attλ), а другую в ДНК фага (b2). Затем происходитразрыв обеих молекул ДНК и последующее их перекрестное воссоединение. После этого ДНК фага λ реплицируется с клеточной ДНК как единая структура, и все дочерние клетки при делении получают копию фаговой ДНК в составе хромосомы. Подобные клетки называются лизогенными, а ДНК фага λ в них – профагом. Состояние лизогении поддерживается благодаря постоянному образованию белка-репрессора сІ, и довольно неустойчиво: в любой момент может произойти переключение на литический путь из-за проявления антирепрессорных функций белка Cro.

Таким образом, умеренные бактериофаги могут находиться в трех состояниях:

- в свободном состоянии в виде частиц – вирионов;

- в состоянии профага;

- в вегетативном (активном) состоянии, когда бактериофаг способен вызывать лизис бактериальной клетки.


БАКТЕРИОФАГ ЛЯМБДА КАК МОДЕЛЬНЫЙ ОБЪЕКТ В ГЕНЕТИЧЕСКИХ ИССЛЕДОВАНИЯХ

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Фаг лямбда (фаг λ) — это умеренный бактериальный вирус E. coliс двухцепочечной геномной ДНК. Был впервые обнаружен Э. Ледербергом в 1950 году (E.M. Lederberg, 1950). Через 3 года А. Львов при исследовании генетических элементов (плазмид и эписом) у бактерий открыл способность фага лямбда встраиваться в геном бактерии E. coli в состоянии профага и передаваться в ряду поколений как генетический элемент (Lwoff, 1953). Встроенный фаг Львов назвал профагом, а бактерию, в которую был встроен геном – лизогенной.

Бактериофаг лямбда состоит из головки икосаэдрической формы и хвоста. На его конце имеются боковые нити. Имеется белковая оболочка, в состав которой входит около 15 белков. Они кодируются вирусным геномом. Интеграция фага происходит путем генетической рекомбинации на определенном сайте бактериального генома – сайт att λ . Обмен генетической информацией осуществляется с образованием структуры Холлидея и в присутствии двух белков: бактериального IHF и фагового Int, которые, связываясь с определенным сайтом кольцевого генома фага (attP), образуют интрасому (В.Н. Тоцкий, 2002).

Фаг лямбда может развиваться по лизогенному и литическому пути в зависимости от характера взаимодействия клетки-хозяина и вируса. Литический жизненный цикл заключается в производстве новых фаговых частиц и высвобождении вирусного потомства в среду; влечет гибель клетки-хозяина. При лизогенном пути фаговый геном страивается в хромосому E.coli и может передаваться следующим поколениям (М. Пташне, 1988).

Фаг лямбда является одним из наиболее детально изученных живых организмов на Земле. В связи с этим его используют как модельный объект в генетических исследованиях. В генной инженерии данный фаг применяют в качестве вектора для клонирования, так как молекула ДНК бактериофага лямбда имеет участок, не являющийся необходимым для его развития. Поэтому его можно вырезать и заменить любым другим аналогичным по размеру фрагментом ДНК, а затем путем размножения рекомбинантного бактериофага осуществить клонирование. Для создания библиотек генов одними из самых распространенных и являются векторы на основе фага λ.

Данный бактериофаг также применяют для лечения некоторых бактериальных заболеваний (холеры, дизентерии) без риска для здоровья. Зачастую препараты бактериофагов заменяют антибиотики, особенно при резистентности бактерий к антибиотикам.

Список использованной литературы:

Пташне М. Переключение генов: Регуляция генной активности и фаг ламбда. — Москва: Мир, 1988

Тоцкий В.Н. Генетика. - 2-е изд. - Одесса: Астропринт, 2002

Lederberg, E. M. Lysogenicity in Escherichia coli strain K-12 // Microbial Genetics Bulletin. — 1950. — Т. 1.

ФАГ ЛАМБДА (фаг λ; греческий phagos пожирающий) — умеренный бактериофаг, специфичный для кишечной палочки.

Фаг ламбда является эталонным представителем обширной таксономической группы ламбдоидных фагов, отличающихся способностью к индукции под действием УФ-лучей, возможностью рекомбинации в перекрестных скрещиваниях и сходством в последовательности нуклеотидов концевых участков молекул их ДНК. Предполагают общность происхождения ламбдоидных фагов.

Изучение фага ламбда сыграло выдающуюся роль в становлении и развитии молекулярной генетики и биологии, генетической инженерии.

Закономерности, установленные при исследовании фага ламбда, лежат в основе современных представлений о молекулярных механизмах репликации (см.), рекомбинации (см.), транскрипции (см.), находят прикладное применение при конструировании рекомбинантных молекул.

Фаг ламбда описал в 1951 году Ледерберг (E. Lederberg). Вирион фага представляет собой изометрическую многогранную головку икосаэдрической формы размером около 55 нм с отростком длиной 150 нм и шириной 7 — 12 нм. Капсид головки построен в основном из 420 копий белка с молекулярным весом (массой) 38 000 и 415 копий белка с молекулярным весом 11 000.

Отросток состоит из гибкого полого стержня с фибриллой на конце, не имеет сократшмого чехла, присоединяется к капсиду головки утонченной шейкой и по структуре напоминает уложенные стопкой диски. Внутри капсида вокруг белковоподобного ядра (предположительно, внутреннего белка) располагается одна молекула ДНК — линейная двухцепочечная молекула с молекулярным весом около 30,8 X 106. Гомология нуклеотидных последовательностей ДНК фага ламбда и родственных фагов в сумме составляет 35—60% от общей молекулярной длины и представлена отдельными участками. На обоих концах молекулы имеются одноцепочечные взаимно комплементарные участки из 12 нуклеотидов (липкие концы), обеспечивающие возможность преобразования линейной формы ДНК в кольцевую структуру.

При заражении бактерий фагом его ДНК может реплицироваться в цитоплазме как автономный элемент или интегрироваться в зарепрессированном состоянии в хромосому и реплицироваться как ее составная часть (профаг) под генетическим контролем бактерии. Рекомбинация осуществляется в специфических для ДНК фага и клетки сайтах (участках) взаимного прикрепления, сопровождается их физическим разрывом и последующим воссоединением с образованием целостной генетической структуры клетки с встроенной в нее в линейной форме ДНК фага.

Сайт-специфическая интеграционная рекомбинация осуществляется при отсутствии выраженной нуклеотидной гомологии в сайтах со специфическим участием белка, контролируемого геномом фага. Детерминируемый профагом репрессор, взаимодействуя с двумя его локусами, препятствует в клетке экспрессии (проявлению) его генов, автономной репликации его ДНК, способствует возникновению специфического иммунитета клетки и поддерживает ее лизогенное состояние (см. Лизогения) в неограниченном числе генераций с наследуемой потенциальной способностью образовывать фаг. Индукция фага устраняет действие репрессора, проявляется активацией репрессированных генов профага, приводящей к его вырезанию из хромосомы клетки с помощью сайт-специфической рекомбинации при участии, белков, кодируемых генами фага. В состоянии автономной дерепрессированной кольцевой молекулы, как и при литическом цикле развития фага, ДНК реплицируется сначала в кольцевой форме, а позже из -промежуточной репликативной формы образуются характерные для вирионов линейные молекулы. Репликация происходит в двух направлениях от фиксированной на кольцевой молекуле точки начала репликации с участием белков, кодируемых двумя генами фага под сложным контролем его систем положительной и отрицательной регуляции. Литический цикл развития завершается в пределах 50 мин. сборкой фаговых частиц, лизисом клетки и высвобождением около 100 вирионов, образующих мутные негативные колонии на газоне бактерий вследствие их лизогенизации (см. Грациа метод). Нарушение границ вырезания профага может привести к частичному замещению его ДНК примыкающими бактериальными генами с образованием дефектных фаговых частиц, осуществляющих специфическую трансдукцию (см.). У фага ламбда известны многочисленные разнообразные мутации, с помощью которых в его геноме картировано свыше 40 генов. Выделяют 4 основные группы генов: рекомбинации, репликации ДНК, регуляторные и детерминирующие структурные компоненты фага и гены лизиса клетки. Первые три группы генов функционируют на раннем этапе развития фага, последняя — на позднем. Протяженные делеционные мутанты с утратой до 85% генома, но сохранившие репликон и мутанты по регуляторному гену N, функционируют как типичные плазмиды (см.), не интегрируя в хромосому клетки и не образуя фаговых частиц.

Библиогр.: Дикарев С. Д. и Розинов М. Н. Бесклеточная система упаковки ДНК в капсид фага лямбда, Молек. генет., микробиол. и вирусол., № 8, с. 12, 1983; Фаг лямбда, пер. с англ., под ред. Б. Н. Ильяшенко, М., 1975; Хэйс У. Генетика бактерий и бактериофагов, пер. с англ., М., 1965; Lederberg E. М. Lysogenicity in E. coli K-12, Genetics, v. 36, p. 560, 1951.

Длинный хвостовой отросток, ДНК 2-х цепочечная, линейная внутри головки.

На 5/-конце каждой ее цепи имеется одноцепочечная последовательность из 12 нуклеотидов – липкие концы (cos-сайты). Сразу же после проникновения фаговой ДНК в бактериальную клетку, липкие концы ДНК ковалентно соединяются ДНК-лигазой клетки-хозяина и образуется кольцевая молекула.

Далее, как правило, эта кольцевая молекула бактериофаговой ДНК не приступает к транскрипции, а встраивается в бактериальную хромосому. Установлено, что гены фага λ кодируют синтез четырех регуляторных белков, один из которых репрессорный белок сI (кодируется геном сI) блокирует развитие событий литического цикла, а антирепрессорный белок Cro (кодируется геном сro), наоборот, запускает их. После поступления ДНК фага λ в клетку, выбор между литическим и лизогенным путями развития зависит от относительной скорости накопления регуляторных белков: если преобладает антирепрессорная функция белка Cro, то развиваются события литического цикла, если успевает проявиться функция репрессорного белка сI, литический цикл не осуществляется, так как белок сІ связывается с ДНК фага λ в особых участках, препятствуя транскципции фаговых генов.

Встраивание ДНК фага λ в бактериальную хромосому осуществляется согластно интегративной модели А.Кемпбелла. Этот процесс называется сайт-специфической рекомбинацией, так как встраивание ДНК фага λ осуществляется в одном и том же месте (сайте) между генами gal и bio и не зависит от rec A-системы бактериальной клетки.

За интеграцию ДНК фага λ ответственен фермент лямбда-интеграза. Этот фермент узнает две разные последовательности – одну в хромосомной ДНК (att λ), а другую в ДНК фага (b2). Затем происходит разрыв обеих молекул ДНК и последующее их перекрестное воссоединение.

После этого ДНК фага λ реплицируется с клеточной ДНК как единая структура, и все дочерние клетки при делении получают копию фаговой ДНК в составе хромосомы. Подобные клетки называются лизогенными, а ДНК фага λ в них – профагом.

Организация геномов и особенности репликации бактериофагов (ms2, r17, м13)


М13, содержащие однонитевые ДНК, кольцевые, но фаговые частицы данных фагов представлены нитевидными образованиями., прикрепляются к ворсинкам (F-ворсинкам), к верхушкам этих ворсинок и таким образом репродуцируются только в клетках, содержащих F-фактор т.е являются F -специфическими фагами. Их геном представлен кольцевой молекулой ДНК, вытянутой формой т.е в виде длинного овала. Длина фаговых частиц около 1 микрометра т.е такой же длины как клетка хозяина. Вирусная ДНК фаговых частиц покрыта белковым чехлом или белковой оболочкой, состоящей из субъединиц белковых, которые уложены наподобие черепицы на крыше. Полагают, что данные фаги могут прикрепляться не только к верхушкам F –ворсинок, но и к основанию этих ворсинок. Однако каким образом осуществляется заражение данными фагами точно не установлено. Существует представление, что они могут прикрепляться к верхушке ворсинки, а затем ворсинка сокращается и фаговая частица приближается к основанию ворсинки, где инфицирует клетку. Либо нуклеиновая кислота этих фагов двигается по внешней поверхности ворсинки к основанию ворсинки и там проникает в клетку. Эти две концепции остаются умозрительными представлениями, ибо четких экспериментальных доказательств до сих пор нет. Обладают максимум 8 генами, однако не все продукты этих генов идентифицированы

Синтез фаговой ДНК начинается с образования репликативной формы, в формировании которой участвует белок-лоцман. На второй стадии репликации генома данных фагов необходим продукт одного из генов данного фага, этот ген также, как и ген 10174, ген номер два, индуцирует разрыв в одной из нитей репликативной формы, т.е обеспечивает переход к следующей стадии репликации. Переход от тета- способа к способу по типу катящегося кольца.

На стадии репликации, образующиеся геномные молекулы данного фага (геномных ДНК) покрываются не белком оболочки, который детерминируется геном 8 у фага М13 например, а белком детерминируемым геном 5. Этот белок в виде димера субъединиц покрывает однонитевые молекулы геномной ДНК, препятствуя их использованию в виде матрицы для формирования репликативной формы, и защищает от действия нуклеаз. В таком виде, вместе с белком-лоцманом, структура, состоящая из геномной ДНК данного фага, покрытая димерами белка 5, транслоцируется к внутренней поверхности к ЦПМ, в место, где предварительно инкорпорирован продукт гена 8,(объяснение схемы) белок оболочки и включения этого белка в мембрану, модифицирует данный участок мембраны и обеспечивает в последующем возможность проникновения незрелого еще фага в данном месте во внешнюю среду. Данный фаг не вызывает лизис клетки, а его частицы высвобождаются из клетки по типу постоянного выталкивания вновь образующихся вирионов через поверхностные структуры, т.е напоминает отпочковывание вирусов животных в клетках хозяина. При этом клетка не прекращает своих синтезов, они только замедляются и репродукция фага такого типа сопровождается одновременными синтезами клеточных компонентов. Это тоже является особенностью данных фагов и отличает от всех остальных бактериальных вирусов, которые, в принципе, высвобождаются в результате лизиса. При этом многими рассматривается данное явление как аналог секреции белков бактериальными клетками.

Транслокация белка оболочки с поверхностной структуры клетки напоминает первую (имитацию?) секреции белков, ибо эти белки имеют сигнальные последовательности, которые потом отрезаются сигнальной пептидазой и с этого начала секреции белков использование(insec?)- системы. И в процессе проникновения незрелых фаговых частиц, состоящих, как вы слышали, из геномной ДНК, покрытой димерами белка 5 и прикрепленным белком-лоцманом,(?который эти димеры замещаются) белком 8 и при прохождение через поверхностные структуры создаются полноценные фаговые частицы. Возможно, что этот процесс несовсем точно охарактеризован, но полагают, что основные моменты изложены достаточно корректно с действительностью. Данные фаги нитевидные, содержащие ДНК, характеризуются непостоянством своих размеров, их частицы могут существенно отличаться по длине и по содержанию нуклеиновой кислоты. Эти фаги характеризуются еще высокой плодовитостью, урожай таких фагов на клетку достигает 10тыс. фаговых частиц на одну инфицированную бактерию и можно получить до 1г фаговых частиц на 10л фагового лизата. Нитевидные фаги удобны для некоторых целей в генной инженерии: можно получать векторные системы, которые представлены однонитевой ДНК либо двунитевой ДНК, если для этого использовать репликативные формы.


M S2. Чувствительные клетки Escherichia coli AB 259 Hfr 3000, инфицированные РНК-содержащим фагом MS2, продуцируют фаговые частички и одновременно продолжают делиться, выщепляя чувствительные клетки, способные поддерживать новые циклы инфекции. Размножение фага в чувствительных клетках приводит к появлению фагоустойчивых форм в потомстве этих клеток. Показано, что это явление обусловлено не селекцией предсуществующих фагоустойчивых мутантов, а является результатом взаимодействия между фагом и клеткой. В отличие от обычных спонтанных или химически индуцированных мутантов E. coli, MS2-индуцированные фагоустойчивые клетки представлены генетически нестабильными формами.

Также заражают только клетки с F-пилями. Вирион этих фагов имеет форму икосаэдра. Капсид состоит из 180 молекул белка оболочки и одной молекулы белка А – белка созревания. А-белок служит рецептором, узнающим клеточную поверхность. Заражение происходит при прикреплении вириона к половому пилю. РНК входит в клетку вместе с А-белком. Эта РНК – однонитчатая, небольшая, кодирует 3-4 белка и сразу может быть использована рибосомами для трансляции (так называемая плюс-РНК). Среди вновь синтезированных вирусных белков – РНК-зависимая РНК-полимераза, которая синтезирует на матрице плюс-РНК комплементарную ей минус-РНК, а затем на матрице минус-РНК – новые цепи плюс-РНК. Из РНК, структурного белка и А-белка собираются новые вирионы. Фаг MS2 лизирует клетку. Во время размножения они выщепляют новые MS2-устойчивые формы с более выраженными изменениями в области, кодируемой половым фактором. Клетки двух конечных форм MS2-индуцированных мутантов продуцируют также новый тип фагов, преставленных ДНК-содержащими формами, которые нейтрализуются, однако, анти-MS2 сывороткой. Выщепление этих фагов подтверждает, что генетическая субстанция РНК-содержащего бактериофага способна экспрессироваться как часть ДНК-содержащей структуры.

Читайте также: