Маркировка распредвалов форд фокус 2

Добавил пользователь Дмитрий К.
Обновлено: 19.09.2024

Форд Фокус 2. Неисправности датчика распределительного вала

Признаки неисправности датчика распредвала

В головке блока цилиндров двигателя автомобиля находится один или два распределительных вала, которые оснащены специальными лепестками, которые предназначены для работы впускных и выпускных клапанов. Коленчатый вал находится в самом блоке цилиндров, который, при получении крутящего момента от движения поршней в блоке передает его (крутящий момент) с помощью шестерней, цепи ГРМ (или ремня ГРМ) на распределительный вал.
Для того чтобы определить, какой цилиндр двигателя находится в такте, компьютер вашего автомобиля контролирует положение поворота распределительного вала относительно положения коленчатого вала с помощью датчика распредвала (СМР). Получаемая информация с датчика СМР необходима для настройки синхронизации подачи искры в камеру сгорания и для работы топливных форсунок. Таким образом, датчик распредвала напрямую влияет на расход топлива машины и на количество выбросов в выхлопе.


Наиболее распространенные датчики распредвала: -магнитные, основанные на эффекте Холла. Оба типа датчиков передают сигнал напряжения к электронному блоку управления двигателем или на бортовой компьютер машины.

Магнитный тип датчика распредвала производит собственный переменный ток (синусоидальная волна). Обычно этот датчик имеет два провода. Датчик основанный на эффекте Холла использует внешний источник питания для получения цифрового сигнала и как правило, имеет три провода.
В зависимости от марки и типа вашего автомобиля двигатель может иметь один или несколько датчиков распределительного вала. Также в вашей машине могут использоваться два вида датчиков CMP.

Признаки наличия поломки

Как и любая деталь машины, этот датчик может перестать работать по причине изношенности. Это обязательно произойдет, как только истечет срок его службы. Наиболее распространенной причиной служит изношенность внутренней обмотки проволоки либо составных частей, находящихся с ней в непосредственной связи.

Скорее всего, в такой ситуации работа двигателя будет осуществляться с перебоями, а указывать на наличие неполадок могут различные признаки, которые зависят от вида износа датчика. К примеру, в нем может быть изношен тот же разъем, внутренняя цепь датчика или связанный с ним конструкционный элемент.

На некоторых моделях в этом случае может быть заблокирована на одной скорости коробка переключения передач. Чтобы избавиться от этой проблемы, необходимо выключить двигатель и снова его завести. Это может повториться спустя определенный период времени.

Еще одним признаком подобной неисправности может быть движение автомобиля рывками и потеря скорости. Другим вариантом может быть потеря мощности, в результате чего набрать скорость выше 60 км/ч просто не выйдет.

Симптомы неисправности датчика распредвала

-Двигатель начинает работать с перебоями, а признаки неисправности могут варьироваться в зависимости от типа износа датчика

- На некоторых типах автомобилей, при неисправности датчика положения распределительного вала, коробка передач может заблокироваться на одной из передач, и будет заблокирована до тех пор, пока Вы не выключите двигатель и обратно его не запустите. Это может повторяться с определенной цикличностью.

- Если датчик распредвала во время движения автомобиля начинает некорректно работать, то Вы сразу можете почувствовать, что ваш автомобиль начал двигаться рывками и терять при этом скорость.

- При неисправности датчика распредвала Вы можете столкнуться с заметной потерей мощности самого двигателя. Например, ваша машина не сможет просто разогнаться свыше 60 км/час.

- Двигатель может глохнуть с перерывами, и все это из-за неисправности датчика СМР.

- При выходе из строя датчика Вы заметите плохую работу двигателя, у него будут потеря динамичности, осечки при включении зажигания, толчки при разгоне, хлопки в системе выхлопа и т.п. неровности в работе.

- На некоторых моделях автомобилей при неисправности датчика распредвала может полностью исчезнуть искра зажигания, что в итоге приведет к отказу и к невозможному запуску двигателя.


Система VCT (variable valve timing) предназначена для независимого управления положением распределительных валов впускных и выпускных клапанов. Она регулирует параметры открытия клапанов в соответствии с нагрузкой на мотор и скоростью вращения. Таким образом, мощность силовой установки используется более эффективно, снижается расход топлива, улучшаются динамические характеристики, уменьшается токсичность выхлопа. Управление системой осуществляет электронный блок управления.

В системе регулирования фаз газораспределения насчитывается большое количество деталей и механизмов. Основные из них: электромагнитные клапаны, исполнительные механизмы и датчики положения распределительных валов.

Между верхней передней крышкой привода газораспределительного механизма и крышкой головки блока цилиндров, расположены два электромагнитных клапана системы (на каждый распределительный вал по одному). Общей передней крышкой подшипников распределительных валов и держателем сальников одновременно является крышка системы.

Исполнительные механизмы системы приводятся в действие при помощи ремня привода газораспределительного механизма. Вращение распределительным валам передаётся при помощи гидромеханической связи. Положение валов отслеживают диски датчиков, закреплённые на концах. Сами датчики находятся в крышке головки блока цилиндров.

К электромагнитным клапанам системы фаз газораспределения масло подаётся по каналам в крышке CVT из магистрали головки блока цилиндров и далее, идёт к исполнительным механизмам.

Поворот распределительного вала на требуемый угол происходит благодаря гидромеханическому воздействию на отдельные элементы исполнительного механизма. Исполнительный механизм срабатывает от давления масла, которое через электронный блок управления регулируется золотниковым устройством каждого электромагнитного клапана.

На работу механизма в целом большое влияние оказывает чистота моторного масла. Золотниковое устройство очень требовательно и чувствительно. Именно поэтому в канале головки блока цилиндров встроен фильтр, через который проходит масло, прежде чем попасть к клапанам. Фильтр не сменный, а при засорении смазка продолжает подаваться в систему по обводному каналу магистрали.
________________________________________________________________________________________

Двигатель 1.6 Форд Фокус 2 100 л.с.


Форд Фокус, это компактные автомобили американского производителя, пользующиеся большой популярностью на нашем рынке. Марка прославилась своей техникой, зарекомендовавшей себя с лучшей стороны. Форд Фокус второго поколения был самым популярным автомобилем в России в 2003-2008 годах. Отличительной особенностью была невысокая цена, хорошие ездовые характеристики и надёжные силовые установки.

Двигатель на Форд Фокус 2 1.6 литра выпускался в двух модификациях, имеющих мощность 100 и 115 л.с. Это один и тот же мотор, только установка на 115 л.с. имеет систему регулирования фаз газораспределения Ti-VCT, за счёт чего и большая мощность.

Двигатель 1.6 100 л.с. из серии Duratec (или по другой спецификации Zetec-SE) имеет брата близнеца, но объемом 1.4 литра. Конструктивно Duratec 1.6 и Duratec 1.4 практически одинаковы, поэтому данная статья будет интересна и обладателям 1.4 литрового мотора. Единственная разница заключается в размере и ходе поршня, других шатунах и коленчатом валу. А так это бензиновые атмосферные 16 клапанные моторы с алюминиевым блоком цилиндров и ремнем в приводе ГРМ. На Фокусах произведенных в России ставили движок Duratec 16V Sigma (Zetec-S) 1.6 л. 100 л.с. Силовой агрегат оказался самым востребованным на Ford Focus 2.
________________________________________________________________________________________

Устройство двигателя Форд Фокус 2 1.6

Двигатель Фокус 2 1.6 литра мощностью 100 лошадиных сил – бензиновый, четырехтактный, четырехцилиндровый, рядный, шестнадцатиклапанный, с двумя распределительными валами. Расположение в моторном отсеке поперечное. Порядок работы цилиндров: 1–3—4–2, отсчет — от шкива привода вспомогательных агрегатов.

Система питания — фазированный распределенный впрыск топлива (нормы токсичности Евро-4). Двигатель с коробкой передач и сцеплением образуют силовой агрегат — единый блок, закрепленный в моторном отсеке на трех эластичных резинометаллических опорах. Правая опора крепится к кронштейну, расположенному на правой стенке блока цилиндров, а левая и задняя — к картерам коробки передач.


Коренные и шатунные шейки коленчатого вала соединяют каналы, просверленные в теле вала, которые служат не только для подвода моторного масла от коренных к шатунным подшипникам, но и для центробежной очистки масла от твердых частиц и отложений при вращении вала. На переднем конце (носке) коленчатого вала установлены: зубчатый шкив привода газораспределительного механизма (ГРМ) и шкив привода вспомогательных агрегатов.


Масляный насос. Мотор Форд Фокус 2 имеет комбинированную систему смазки. К деталям силовой установки масло подаётся под давлением, нагнетаемым масляным насосом. Конструкция насоса имеет шестерни внутреннего зацепления и редукционный клапан. Привод насоса осуществляется за счёт ведущей шестерни, установленной на носке коленчатого вала. Масло забирается насосом из поддона и, проходя через масляный фильтр, попадает в главную магистраль блока цилиндров. Оттуда оно поступает через масляные каналы к подшипникам коленчатого и распределительного валов.

ГБЦ сделана из алюминиевого сплава. Клапаны в головке блока цилиндров расположены в два ряда, V-образно, по два впускных и два выпускных клапана на каждый цилиндр. Клапаны стальные, выпускные — с тарелкой из жаропрочной стали и наплавленной фаской. Диаметр тарелки впускного клапана больше, чем выпускного. В головку блока цилиндров запрессованы седла и направляющие втулки клапанов. Сверху на направляющие втулки клапанов надеты маслосъемные колпачки, изготовленные из маслостойкой резины. Клапан закрывается под действием пружины. Нижним концом она опирается на шайбу, а верхним — на тарелку, удерживаемую двумя сухарями. Сложенные вместе сухари имеют форму усеченного конуса, а на их внутренней поверхности выполнены буртики, входящие в проточки на стержне клапана.


Привод ГРМ двигателя Форд Фокус 2 1.6


Привод распределительных валов осуществляется зубчатым ремнем от шкива коленчатого вала. Автоматическое натяжное устройство обеспечивает требуемое натяжение ремня в процессе эксплуатации. Особенностью привода газораспределительного механизма является то, что зубчатые шкивы коленчатого и распределительных валов не фиксируются на валах с помощью шпонок или штифтов, а — только за счет сил трения, возникающих на торцевых поверхностях шкивов и валов при затяжке болтов крепления шкивов. Схема привода ГРМ Форд Фокус 2 1.6 на фото чуть выше. На данном двигателе при обрыве ремня ГРМ гнет клапана, поэтому замену лучше не оттягивать. По регламенту замена ремня ГРМ на Фокус 2 1.6 16 клапанов проводится раз в 100 000 километров.

Технические характеристики


Более мощный мотор имеет такую-же конструкцию, что и двигатель 1.6 100 л.с, отличительной особенностью является наличие системы регулирования фаз газораспределения.

Двигатель устанавливался на:
Ford C-Max
Ford Fiesta Mk.IV
Ford Fiesta Mk.V
Ford Focus Mk. I
Ford Focus Mk. II
Ford Fusion
Ford Mondeo Mk IV
Ford Puma
Mazda 2 Mk.II
Volvo C30
Volvo S40 Mk.II
________________________________________________________________________________________

Неисправности и ремонт двигателя Duratec 1.6

Сложно отметить какие либо технические недостатки движка, мотор очень удачный, надежный и не капризный. Его основной минус это малая мощность, к примеру самый популярный и массовый автомобиль Ford Focus II с таким мотором совсем не едет, особенно с АКПП. Чтоб движок служил долго и не создавал проблем хозяину, нужно обязательно раз в 60 тыс.км. менять ролики и ремень ГРМ, больших денег это не потребует.

Поговорим о возможных неисправностях вашего дюратека 1.6, как и 1.4 литровый собрат, мотор изредка(!) может троить, вибрировать, греться, стучать, шуметь и т.д., Мотор очень неплохой и надежный, существует версия с регулируемыми фазами газораспределения Ti-VCT 1.6 л, но и тот и другой любителям активного вождения стоит обходить стороной, для таких случаев существует еще более надежный и ликвидный на вторичке двигатель 2.0 145 сил.
________________________________________________________________________________________

Тюнинг двигателя Ford Focus 1,6 100 л.с.

Чип тюнинг Duratec 1.6. Первое, что приходит на ум владельцам это прошить, в надежде, что авто попрет как 2,5 литровый ST. Обычно после прошивки ваш 1,6 выдаст порядка 110-115 л.с., на практике прибавка совсем незначительная и больше носит характер самовнушения, при этом расход топлива увеличится. Делать или нет решать вам, по сути это деньги в никуда, переходим к следующему пункту.

Установка компрессора на Duratec 1.6. Ровно как и на 1.4 литровый моторчик, на 1.6 тоже можно установить готовый кит на ПК-23-1, очень популярный среди тюнинга тазов. Рабочее давление компрессора 0,5 бар и его особенностью является возможность установки на стандартный дюратек мотор, без снижения степени сжатия в самые кратчайшие сроки(несколько часов). По заявлению производителя прибавка мощности составляет от 30 до 50%, по динамическим показателям автомобиль приблизится к подобным с мотором Duratec HE 2.0 л. В спокойном режиме, с периодическими ускорениями и своевременном обслуживании компрессора, автомобиль вас не разочарует. Ставить более мощный компрессор или турбину на фокус 1.6 на стандартный мотор закончится печально, а с доработкой ШПГ бюджет увеличивается в разы.

Установка 2.0 л. на 1.6 литровый фокус. Идеальный тюнинг 1,6 литрового движка — заменить на 2.0, выше мощность, еще большая надежность и моторесурс. При этом расход топлива остается на том же уровне или незначительно увеличивается.
________________________________________________________________________________________
*****************************************************************************************************************
________________________________________________________________________________________

Фазорегулятор и принцип его работы.

Фазорегулятор, фазовращатель или "фазер" — это устройство в современных двигателях позволяющее изменять коэффициент наполнения цилиндров за счет изменения перекрытия клапанов. Благодаря регулируемым фазам газораспределения можно влиять как на количество свежего заряда, так и на долю остаточных отработавших газов. В зависимости от частоты вращения коленчатого вала и от степени открытия дроссельной заслонки поведение поступающего в цилиндр заряда и выход из него отработавших газов сильно меняются.


При установке постоянных фаз газораспределения газообмен возможно оптимизировать лишь для определенного диапазона частот вращения. Регулируемые фазы газораспределения позволяют вносить корректировки с учетом изменения частоты вращения коленчатого вала и различного наполнения цилиндров рабочей смесью.


Все это в результате дает следующие преимущества:
• Увеличение выходной мощности двигателя;
• Получение благоприятной характеристики изменения крутящего момента в широком диапазоне оборотов коленчатого вала;
• Снижение содержания вредных веществ в отработавших газах;
• Уменьшение расхода топлива;
• Снижение шумности работы двигателя.

Поворот распределительного вала осуществляется посредством электрического или электрогидравлического привода. Простые устройства могут устанавливать вал только в одном из двух положений. Более сложные устройства позволяют в пределах определенного диапазона плавно поворачивать распределительный вал относительно коленчатого.

В современных быстроходных двигателях открытие впускного клапана происходит в среднем за 10-35° до прихода поршня в в.м.т., а закрытие — через 40-85° после н.м.т. Выпускной клапан закрывается через 10-30° после прохода в.м.т. Однако указанные средние пределы открытия и закрытия клапанов по конструктивным соображениям могут быть изменены как в большую, так и в меньшую сторону.

Для получения максимальной мощности необходимо обеспечить максимально возможные значения углов опережения открытия и запаздывания закрытия впускных клапанов. На высоких оборотах двигателя наполнение цилиндра происходит благодаря инерции газового потока при еще открытом впускном клапане во время подъема поршня. Наоборот, на низких оборотах двигателя большое значение запаздывания закрытия впускного клапана вызывает частичное вытеснение из цилиндра заполнившей его свежей рабочей смеси, что приводит к значительному уменьшению крутящего момента двигателя.

Рассмотрим устройство и принцип действия фазорегулятора на примере двигателя ВАЗ 21179.


Двигатель ВАЗ 21179 оборудован одним фазорегулятором, установленным в зубчатом шкиве впускного распределительного вала.


Шкив состоит из двух частей:
крыльчатки с лопатками, закрепленной на распределительном валу и цилиндра с камерами, закрепленного на зубчатом шкиве распределительного вала.

При определенных условиях электронный блок управления (ЭБУ) выдает управляющую команду на электромагнитный клапан. Открытый клапан обеспечивает подачу масла под давлением по центральному каналу распределительного вала. Масло поступает через центральное отверстие крыльчатки и отверстие для подъема плунжера. Под воздействием давления масла плунжер смещается вверх и освобождает крыльчатку, в результате чего под действием давления масла лопатки крыльчатки и, соответственно, фазорегулятор поворачиваются в направлении максимального запаздывания закрытия впускных клапанов.

При снятии управляющего напряжения на электромагнитном клапане лопатки крыльчатки возвращаются в исходное положение под действием вращения двигателя, после чего плунжер блокирует всю систему в положении минимального запаздывания впускных клапанов.


Электромагнитные управляющие клапаны обеспечивают подачу масла под давлением к фазорегуляторам распределительного вала. При прекращении подачи управляющего напряжения на электромагнитные клапаны от ЭБУ фазорегуляторы возвращают распределительные валы в положение минимального запаздывания впускных клапанов, обеспечивая тем самым получение максимального крутящего момента на малых оборотах.

На автомобилях с двигателем ваз-21179 фазорегулятор распределительного вала действует при соблюдении следующих условий:
✔ Частота вращения коленчатого вала двигателя выше 1500 об/мин.
✔ Давление во впускном трубопроводе выше 500 мбар.
✔ Температура охлаждающей жидкости выше 30°C.

Управление фазами перекрытия клапанов осуществляется ЭБУ на основе сигналов датчиков положения коленчатого и распределительного валов, температуры охлаждающей жидкости и скорости автомобиля. При этом диапазон регулирования угла поворота распределительного вала в режиме холостого хода составляет 0-5, а в режиме резкого увеличения оборотов 0-30. При этом отношение включенного состояния клапана фазорегулятора составляет 0-2% и 0-60% соответственно.

Зная принцип действия и диапазон регулирования, можно диагностировать клапаны фазорегулятора по нескольким параметрам. Для этого необходимо иметь сканер, осциллограф и измеритель разрежения. Отметим, что ЭБУ двигателем не всегда выдает ошибку при неисправности или подклинивании клапана фазорегулятора.

При заклинивании управляющего электромагнитного клапана в открытом положении или фазорегулятора в положении максимального опережения открытия впускных клапанов, двигатель неустойчиво работает на холостом ходу, давление во впускном трубопроводе чрезмерно высокое (выше 360 мбар).


Все знают, что распредвалы это очень важный элемент тюнинга и тем более спортивного мотора. Многие часто слышали о фазах, времени открытия клапанов и т.д. Очень часто, многие могли слушать разговоры типа: а какой мне лучше поставить распредвал 264 или 272, а может 290. На самом деле, это разговор ни о чем.

Распредвалы бывают разные — сток, тюнинг, тюнинг-спорт, полный спорт (кольцо, драг), турбо… У них разные задачи и цели. У всех у них разный диапазон работы. Грубо, возьмём DOHC мотор. Тюнинговый вал с фазами 25-65/70-20 (duration 270) улучшит характеристики мотора с небольшой потерей на низких оборотах, диапазон работы 2500-7200 оборотов. Более широкий вал, который возможно использовать на машине не предназначенной только для гонок будет 40-70/75-35 (duration 290) — 4000-8200 оборотов. Если возьмём мотор SOCH то 280 duration (тюнинг вал) не плохо работает в режиме 2500-6600 оборотов, а 310 duration — 4000-7800 это наверное уже оптимальный максимум для полного спорта.

Те кто действительно желает в этом вопросе разобраться, предлагаю забыть то что я выше написал.

Что бы лучше все это понять давайте виртуально увеличим мощность, к примеру, стандартного 2.0 литра Дуратек мотор Форд фокус, который в стоке имеет мощность 145 лошадиных сил.

Представьте, мотор это черный ящик, к которому подведены две трубы, в одну подается топливо, а в другую воздух. В черном ящике топливо смешивается с воздухом, сжимается, поджигается, короче происходит реакция, в следствии чего выделяется энергия и на выходе эта проделанная работа (момент)передается на коленвал.

Количество энергии зависит от массы сгоревшего топлива и его калорийности. Но для повышения мощности мы не можем просто увеличить подачу топлива т.к. для полного сгорания его, необходимо 14.6 частей массы воздуха ( на 1 единицу массы топлива 14.6 единиц массы воздуха). У нас нет проблем с увеличением топлива, но вот с подачей воздуха, если мы не собираемся подключить к черному ящику компрессор, есть определенные трудности.

1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль. или это равняется 1 Дж = 1 кг•м²/с² = 1 Н•м. С учетом того что в нашем черном ящике при сгорании топлива выделятся энергия и конечно производится работа — коленвал передает момент, для того, что бы это перевести в момент (усилие передается через плечо) то мы можем просто работу *на 2Пи (2*3.14159), потом разделим на количество оборотов в секунду и получим момент.

ИЛИ МОЩНОСТЬ (кВ) = МОМЕНТ (N-M)* N (обороты двигателя в секунду) /159.2

МОЩНОСТЬ = МОМЕНТ * 2Пи * N


не пугайтесь этого уравнения, сегодня мы из него рассмотрим только 2 значения (этого будет достаточно для понимания сути), остальное пусть будет неизменным

Для чего я все это написал. Главное чтобы Вы поняли от чего зависит момент и мощность:

Момент зависит от количества выделенной энергии при сгорании топлива (конечно пока опустим всевозможные потери, эффективность, калорийность, КПД — не в этом суть). А количество топлива напрямую зависит от поступившего воздуха.
Мощность зависит от момента и оборотов двигателя. Если момент останется неизменным, но мы повысим обороты то мощность возрастет.

Есть такое понятие объёмная эффективность VE (Volumetric efficiency), Это значение равняется массе воздуха поступающего в двигатель по отношению к его рабочему объёму. Мотор дюратек, это современный с хорошей ГБЦ (головкой блока цилиндров) DOCH. В стоке, его максимальное VE равняется 95% в точке максимального момента. Это значит, что максимум в двигатель попадает только 95% от объёма 2 литра. Вообще VE оно не постоянно для двигателя, на моторе Дюратек на 2000 оборотах оно равняется 84% потом растёт до своего максимума 95% и начинает опять понижаться, на 6500 уже 88%, а на 7500 всего 75%.

Так как же нам повысить мощность на этом моторе? Если вы просто будете крутить ваш мотор то мощность от этого только уменьшится т.к. VE (Volumetric efficiency) уменьшатся и после 6000 оборотов падение коэффициента наполнения составляет ниже 88% — это как объём Вашего мотора с повышением оборотов уменьшится.

Да конечно можно установить нагнетатель воздуха, можно физически увеличить размер мотора (рабочий объём), но сегодня будем делать по другому. Давайте для начала просто передвинем VE (Volumetric efficiency) с точки максимального момента, скажем на 6500 оборотов. Раньше у нас там было значение 88%, следовательно оно станет 95%. В результате мы без проблем получим 170 сил на 6500 оборотах (не плохо).

Вообще какие бывают максимальные значения объёмной эффективности у атмосферных моторов? Современные 4 клапана на цилиндр моторы: 92-95%. Тюнинг легкий до 105%. NASCAR — 110%. Моторы со свободным впуском (Weber карбюраторы, заслонка на каждый цилиндр) отличный выпускной коллектор -110-115%. Гоночный мотор — 120-125%.

Что влияет на VE (Volumetric efficiency)? почему она на сток машинах такая не большая (2 клапана на цилиндр максимум 80-85%) на сток моторах:

— Потери в системе впуска, чем больше всевозможных препятствий, изгибов тем больше потери. На турбо моторах (из-за интеркулера, пайпинга) нормальное явление потери в пределах 0.2 бара, если сравнить эффективность турбо мотора 4 клапана на цилиндр, без учета избыточного давления, то оно составим не более чем на моторе с 2 клапанами на цилиндр.

— Повышение температуры поступающего воздуха и как следствие уменьшение плотности воздуха и конечно его массы.

— цилиндры не полностью очищаются от отработанных газов, их объём может составлять более 5%. Соответственно уменьшатся в таком же количестве и поступление свежего воздуха.

— Обратное давление в системе впуска

Если сложить все эти потери, то они составят намного больше чем 5%, которых нам не достает до 100% на моторе форд фокус. А вот за это и отвечает настройка системы впуска/ выпуска и распредвал. На сток моторах она настроена на режим круиз и максимального момента. Поэтому именно там обычно и есть максимальные значения VE (Volumetric efficiency).

Ну вот, теперь поговорим о распредвалах. Что и зачем вообще распредвал в моторе делает? делает он простую и не сложную работу — открывает и закрывает в нужный момент клапана. Чтобы лучше понять его работу давайте вспомним что значит 4 тканый мотор.

Все очень просто: 1 такт — впускной, 2 такт — сжатие, 3 такт — рабочий ход и 4 такт — выпуск.

Теперь добавим к этим 4 тактам еще 4 очень важных процеса:

Впускной клапан открыт — ВКО
Выпускной клапан открыт — ВыКО
Впускной клапан закрыт — ВКЗ
Выпускной клапан закрыт — ВыКЗ

Но чтобы понять как добиться 125% VE (Volumetric efficiency) на атмосферном моторе этого нам мало. Поэтому рассмотрим 7 тактов (событий) которые связаны между собой, которые отвечают за наполняемость цилиндров, за все процессы связанные с воздухом и газами.

ПРОЦЕСС 1 — ВПУСК (ВСАСЫВАНИЕ) (INTAKE PUMPING)

Начинается сразу после того как выпускной клапан закрывается (ВыКЗ) в момент перекрытия клапанов (overlap) несколько градусов после верхней мертвой точки ВМТ цилиндра. Впускной клапан (ВК) уже частично открыт и быстро двигающийся поршень вниз начинает всасывать топливо воздушную смесь через впускной канал. Поршень набирает скорость и где-то около 75* после ВМТ достигает своего максимума и поэтому в цилиндре создается низкое давление. ВК полностью открывается около 108* (градусов) после ВМТ. Процесс впуска (всасывания) заканчивается когда поршень останавливается в своей нижней мертвой точке (НМТ). В это момент ВК все еще полностью открыт.

ПРОЦЕСС 2 — ВПУСК (ДОЗАРЯДКА) (INTAKE RAMMING)

Начинается в момент когда поршень меняет свое направление, начинает двигаться вверх, но при этом ВК начинает закрываться. Топливно-воздушная смесь продолжает поступать в цилиндр (утрамбовываться). С движением поршня вверх, давление в цилиндре начинает возрастать, но смесь продолжает поступать. Около 60* после НМТ ВК закрывается и на этом этот процесс заканчивается. Это одно из важнейших событий благодаря которому удается увеличить VE (Volumetric efficiency) до 110% в современных гоночных моторах.

Необходимо этот процесс обсудить более подробно.

Здесь важны два момента:
вовремя закрыть впускной клапан, пока возрастающее давление в цилиндре не начало превышать давление в впускном канале и как следствие выталкивать свеже поступившую топливовоздушную смесь обратно.
Организовать давление как можно больше и дольше во впускном тракте цилиндра.

Это называется инерционный тюнинг или organ pipe tuning, Принцип работы органа (музыкальный инструмент). Для доходчивости я воспользуюсь не совсем верным методом объяснения, но зато очень понятным. Надеюсь все помнят что такое слинки, это такая игрушка


Вот примерно так ведут себя и газы, жидкости в трубах, это как бы пневмапружина. Воздух, газ или топливовоздушная смесь имеет массу, а значит и кинетическую энергию. Если мы потянем за один край этой игрушки, то со временем этот пульс дойдет и до другого края. Так и воздух, он разгоняется в впускном канале, соответственно имеет инерцию, он не может сразу остановится, за волной разряжения обязательно последует волна давления. Чем быстрее мы организуем скорость потока в канале тем больше воздуха поступит в цилиндр т.к. будет больше давление. Воздух будет поступать в цилиндр до тех пор, пока давление в канале будет выше чем в цилиндре и вот тут главное вовремя закрыть канал, чтобы поршень идущий вверх (при этом повышающий давление в цилиндре) не начал выталкивать воздух.

На скорость потока заряда влияет скорость поршня (обороты двигателя), проходное сечение впускного тракта (канал и ранер) и тормозящие процессы вызванные сопротивлением. Теперь становится понятно, что если мы увеличим канал, установим большего размера клапан то скорость потока уменьшится, кинетической энергии будет меньше — меньше давление, меньше поступит воздуха — меньше момент.

Но если мы увеличим скорость поршня за счет увеличения оборотов двигателя то тем самым добьемся компромисса. Закон простой — уменьшаем диаметр или увеличиваем обороты двигателя — повышаем скорость потока (воздушного заряда) НО ПРИ ЭТОМ УВЕЛИЧИВАЕТСЯ СОПРОТИВЛЕНИЕ и на оборот.
Длина определят момент когда процесс должен произойти. Длинее ранер с каналом дольше время необходимо для волны — меньше обороты двигателя и наоборот.

ПРОЦЕСС 3 — СЖАТИЕ

Здесь все просто. Начинается после закрытия ВК в то время пока поршень продолжает двигаться вверх сжимая при этом топливовоздушную смесь в цилиндре. Заканчивается в момент когда свеча зажигает смесь — где-то 30 градусов перед ВМТ. Для постройки гоночного мотора — Ваша задача добиться наименьшего оптимального угла опережения зажигания. Много есть способов (в другой раз)

ПРОЦЕСС 4 — Воспламенение и Расширение

маленькое отступление. Кто не знает, я много лет не живу в России и технический русский язык плохо знаю, поэтому много использую английские выражения. Просьба — если что не так, то поправьте.

Fuel Burning and Expansion. Процесс начинается сразу после зажигания, поршень продолжает двигаться вверх. Температура и давление повышается. пик приходится на 12-15 градусов после ВМТ. Это большое давление давит на верх поршня и толкает его вниз, газы продолжают расширятся. Процесс заканчивается сразу после того как выпускной клапан начинает открываться (exhaust valve cracks open) где-то 120* после ВМТ.

ПРОЦЕСС 5 — EXHAUST BLOWDOWN (ПРОДУВКА)

Начинается сразу после того, как выпускной клапан начинает открываться (exhaust valve cracks open) как раз в этот момент и происходит этот звук (который мы потом заглушаем) . температура и давление все еще в цилиндре высокое, часть смеси продолжает еще гореть. В данный момент, при таком высоком давлении система выпуска не настраивается (продувка все снесёт на своем пути). Процесс важный (поговорим позднее), раньше открыл меньше мощность (эффект как от настройки опережения зажигания)… Заканчивается в момент когда поршень достигает НМТ.

ПРОЦЕСС 6 — EXHAUST PUMPING (ОТКАЧКА)

Откачка. очень похож на ПРОЦЕСС 1 -. Только в обратном направлении. Начинается в момент, когда поршень меняет свое направление и начинает двигаться вверх. Выпускной клапан продолжает открываться и достигает своего максимума где-то 70* после НМТ. Поршень набирает свою максимальную скорость около 105* после НМТ. Выпускные газы благодаря процессу продувки уже не имеют такого высокого давления. Поршень выталкивает через выпускной канал и при этом разгонят отработанные газы, они опять начинают набирать кинетическую энергию. Процесс заканчивается в момент когда впускной клапан начинает открываться где-то около ВМТ.

ПРОЦЕСС 7 — перекрытие (OVERLAP)

Процесс начинается когда ВК открывается, а выпускной еще не закрыт. Очень важный процесс (рассмотрим внимательнее позднее). Процесс заканчивается в момент когда выпускной клапан полностью закрывается.

В это момент настраивается два процесса для очищения и наполнения цилиндра. Цель создать давление на впуске и разрежение на выпуске.

Поршень разогнал выпускные газы, они набрали энергию и поэтому даже когда поршень начинает свое движение вниз, в выпускном коллекторе давление меньше чем в цилиндре и поэтому продолжается процесс высасывания, очищение камеры сгорания, цилиндров. Также это низкое давление помогает всасывать свежий заряд через открывающейся ВК. Часть этого заряда остается в цилиндре, а часть выходит с отработанными газами (очищение, ну и правда повышенный расход вам будет обеспечен)

Выпуск здесь необходимо настроить — организовать скорость потока в выпускных каналах, ранерах. Пик разрежения (и как следствие точка максимального момента или мощности) определяется длиной. С пиком здесь можно поиграть. Можем его сделать очень сильным или " размазать". За это отвечает коллектор, точнее его размер, длина, да или просто наличие. Скажем на драгстерах часто можно встретить просто трубы от каждого цилиндра в воздух.

Но на этом настройка в 7 процессе не заканчивается. Здесь появляется еще один вид — резонансный тюнинг в момент открытия впускного клапана.

Как только выпускной клапан закрывается нам необходимо добиться чтобы в впускном канале образовалось давление. поймать, настроится на одну из волн, амплитуд с положительным экстримом. Это похоже на эхо, вот его нам и надо настроить.

Если все сделать правильно то можно добиться эффективной наполняемости до 130%.

К ПРИМЕРУ: если мы продолжим делать наш мотор форда дюратек. ГБЦ у него не плохая, впускной клапан 35 мм (это с потенциалом до 8200 оборотов двигателя) . Нет, не будем сильно модернизировать. Поршневая сток позволят крутить мотор до 7200 оборотов. Но для безопасности поменяем только шатунные болты на усиленные и тем самым сдвинем порог до 7700 оборотов. Теперь установим хорошие дросселя (свободный впуск) скажем проверенный и хорошо себя зарекомендовавший кит от Jenvey. Изготовим выпускной специально настроенный коллектор и конечно всю систему выпуска поменяем. Установим новые распредвалы. И без проблем мы получим 220 сил на 7200 оборотах, обыкновенном бензине, можно и больше, но это обороты повышать.

Что то я устал, у нас уже утро во всю. стоп. Продолжение следует. Азбуку обсудили, дальше будет интереснее.

PS. Если кому интересно, то здесь 3 части (немного о настройке впуска/вупуска на мотор форд Zetec)



Элементы электронной системы управления двигателем:
1* — датчик абсолютного давления и температуры воздуха на впуске;
2 — блок управления дроссельным узлом;
3* — монтажный блок предохранителей и реле в салоне автомобиля;
4* — датчик фаз;
5* — управляющий датчик концентрации кислорода;
6* — диагностический датчик концентрации кислорода;
7* — свечи зажигания;
8 — катушка зажигания;
9* — датчик температуры охлаждающей жидкости;
10* — сигнализатор неисправности системы управления двигателем;
11* — колодка диагностики (диагностический разъем);
12 — электронный блок управления;
13 — аккумуляторная батарея;
14 — монтажный блок предохранителей и реле в моторном отсеке;
15* — датчик положения коленчатого вала;
16* —форсунки;
17* — датчик детонации

*Элемент на фото не виден

Система управления двигателем состоит из электронного блока управления (ЭБУ), датчиков параметров работы двигателя и автомобиля, а также исполнительных устройств.


Электронный блок управления двигателем
ЭБУ представляет собой мини-компьютер специального назначения. В его состав входят оперативное запоминающее устройство (ОЗУ) и программируемое постоянное запоминающее устройство (ППЗУ). ОЗУ используется микропроцессором для временного хранения текущей информации о работе двигателя (измеряемых параметров) и расчетных данных. Из ОЗУ блок управления двигателем берет программы и исходные данные для обработки. В ОЗУ записываются также коды возникающих неисправностей. Эта память энергозависима, т. е. при прекращении электрического питания (отключении аккумуляторной батареи или отсоединении от ЭБУ колодки жгута проводов) ее содержимое стирается. ППЗУ хранит программу управления двигателем, которая содержит последовательность рабочих команд (алгоритмов) и калибровочных данных — настроек. ППЗУ энергонезависимо, т. е. содержимое памяти не изменяется при отключении питания.
ЭБУ получает информацию от датчиков системы и управляет исполнительными устройствами, такими как топливный насос и форсунки, катушка зажигания, дроссельная заслонка, нагревательный элемент датчика концентрации кислорода, клапан продувки адсорбера, муфта компрессора кондиционера, вентилятор системы охлаждения.
Электронный блок управления расположен в подкапотном пространстве рядом с аккумуляторной батареей.
Кроме подвода напряжения питания к датчикам и управления исполнительными устройствами ЭБУ выполняет диагностические функции системы управления двигателем (бортовая система диагностики) — определяет наличие неисправностей элементов в системе, включает сигнализатор неисправности в комбинации приборов и сохраняет в своей памяти коды неисправностей.
При обнаружении неисправности, во избежание негативных последствий (прогорание поршней из-за детонации, повреждение каталитического нейтрализатора в случае возникновения пропусков воспламенения топливовоздушной смеси, превышение предельных значений по токсичности отработавших газов и пр.), ЭБУ переводит систему на аварийные режимы работы. Суть их состоит в том, что при выходе из строя какого-либо датчика или его цепи блок управления двигателем применяет замещающие данные, хранящиеся в его памяти.


Сигнализатор неисправности системы управления двигателем в комбинации приборов

Сигнализатор неисправности системы управления двигателем расположен в комбинации приборов.
Если система исправна, то при включении зажигания сигнализатор должен загореться — таким образом, ЭБУ проверяет исправность сигнализатора и цепи управления. После пуска двигателя сигнализатор должен погаснуть, если в памяти ЭБУ отсутствуют условия для его включения. Включение сигнализатора при работе двигателя информирует водителя о том, что бортовая система диагностики обнаружила неисправность, и дальнейшее движение автомобиля происходит в аварийном режиме.
При этом могут ухудшиться некоторые параметры работы двигателя (мощность, приемистость, экономичность), но движение с такими неисправностями возможно, и автомобиль может самостоятельно доехать до СТО.
Если неисправность носила временный характер, ЭБУ выключит сигнализатор. Коды неисправностей (даже если сигнализатор погас) остаются в памяти блока и могут быть считаны с помощью специального диагностического прибора — сканера, подключаемого к колодке диагностики.


Расположение колодки диагностики в салоне автомобиля

Колодка диагностики (диагностический разъем) расположена в салоне автомобиля слева под рулевым колесом — закреплена на нижней декоративной накладке панели приборов.
При удалении кодов неисправностей из памяти электронного блока с помощью диагностического прибора сигнализатор неисправности в комбинации приборов гаснет.
Датчики системы управления выдают ЭБУ информацию о параметрах работы двигателя и автомобиля, на основании которых он рассчитывает момент, длительность и порядок открытия топливных форсунок, момент и порядок искрообразования.


Расположение датчика положения коленчатого вала (показано на демонтированном двигателе)


Датчик положения коленчатого вала

Датчик положения коленчатого вала закреплен на блоке цилиндров двигателя под стартером, в месте стыка блока с картером сцепления. Датчик выдает блоку управления информацию о частоте вращения и угловом положении коленчатого вала.
Датчик — индуктивного типа…


…реагирует на прохождение вблизи своего сердечника зубьев задающего диска, выполненного на внутренней торцевой поверхности маховика.

• В случае повторного использования устанавливайте их в те же места, в которых они находились до снятия.

2. Установите распредвалы.

• Очистите шейки распредвалов от посторонних частиц.

• Распредвалы впускных и выпускных клапанов можно отличить по форме передних и задних торцов или по отличительной маркировке (А) и (В).

3.35.3 УСТАНОВКА Ford Focus

1: Распредвал выпускных клапанов

2: Распредвал впускных клапанов

Распредвал выпускных клапанов

Распредвал впускных клапанов

• Устанавливайте распредвалы так, чтобы направляющие выступы (А) на передних торцах встали, как показано на рисунке.

3.35.3 УСТАНОВКА Ford Focus

1: Распредвал выпускных клапанов

2: Распредвал впускных клапанов

Примечание: Хотя распредвалы не останавливаются в положении, показанном на рисунке, для установки рабочих выступов кулачков, как правило, приемлемо, что распредвалы устанавливаются в том же направлении, что и на рисунке.

3. Установите кронштейн распредвалов следующим образом:

a. Полностью удалите посторонние частицы с обратной стороны кронштейна распредвалов и с установочной поверхности в головке цилиндров.

b. Нанесите герметик (А) на кронштейн распредвалов, как показано на рисунке.

3.35.3 УСТАНОВКА Ford Focus

В: Внутренние стенки отверстия под свечу

• Пользуйтесь фирменным герметиком или эквивалентным.

с. Затяните крепежные болты кронштейна распредвалов в несколько проходов в порядке, указанном цифрами на рисунке:

3.35.3 УСТАНОВКА Ford Focus

Имеются крепежные болты двух типов:

М6 (длина резьбы: 57,5 мм): №№13, 14и 15

М6 (длина резьбы: 35 мм): за исключением указанных выше

i. Затяните крепежные болты в порядке, указанном цифрами на рисунке.

: 1,96 Н«м (0,20 кг-м)

ii. Затяните крепежные болты в порядке, указанном цифрами на рисунке.

: 5,88 Н*м (0,60 кг-м)

iii. Затяните крепежные болты в порядке, указанном цифрами на рисунке.

: 9,5 Н*м (0,97 кг-м)

Внимание: Затянув крепежные болты кронштейна распредвалов, удалите излишек герметика, выступившего с контактной поверхности головки цилиндров.

4. Установите звездочку распредвала впускных клапанов на распредвал впускных клапанов следующим образом:

а. В случае снятия звездочки распредвала впускных клапанов (2) ориентируйтесь по метке совмещения (А), нанесенной краской в п. 3. Совместите направляющий выступ и отверстие под него и соедините их.

3.35.3 УСТАНОВКА Ford Focus

1: Кронштейн распредвалов

b. Затяните болты следующим образом:

• При затягивании крепежных болтов зафиксируйте распредвал впускных клапанов за шестигранную часть.

i. Затяните крепежные болты звездочки распредвала впускных клапанов.

: 35,0 Н-м (3,6 кг-м)

ii. Доверните 67' по часовой стрелке (затяжка на угол).

3.35.3 УСТАНОВКА Ford Focus

1: Звездочка распредвала впускных клапанов

А: Шестигранная часть распредвала впускных клапанов

Внимание: Проверьте угол затяжки ключом-угломером (специнструмент: KV10112100) (В) или транспортиром. Избегайте оценки на глаз без использования инструментов.

5. Установите звездочку на распредвал выпускных клапанов в (2).

3.35.3 УСТАНОВКА Ford Focus

1: Звездочка распредвала впускных клапанов

• При затягивании крепежных болтов зафиксируйте распредвал выпускных клапанов за шестигранную часть (А).

Читайте также: