Схема эбу тнвд vp44

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

Топливный насос Bosch VP44 радиального типа является последним переходным звеном к системе CommonRail. Как и старые рядные ТНВД, этот насос распределительного типа целиком и участвует в нагнетании топлива, его подаче к форсункам и дозировке впрыска. Форсунки полностью подчиняются насосу Bosch VP44: срабатывают (открываются и осуществляют впрыск топлива в камеры сгорания) под действием создаваемого насосом давления. Максимальное давление впрыска составляет 180 Мпа. Соответственно, момент впрыска и количество впрыскиваемого топлива также контролирует ТНВД Bosch VP44. Для этого насос оснащен электронным блоком управления.

В момент своего появления ТНВД VP44 считался самым передовым решением, так как обеспечивал топливную экономичность и экологичность. Впрыскиваемое под огромным давлением дизельное топливо буквально превращалось в мелкодисперсный туман, который быстро и полностью сгорал. КПД, плавность и шум работы дизельных двигателей заметно улучшились. Большим достоинством этого насоса было то, что при наличии в нем собственного блока управления его можно было использовать с различными настройками и гибко адаптировать под совершенно разные дизельные двигатели. Эта особенность ТНВД Bosch VP44 сделала его очень популярным среди автопроизводителей: его применяли на своих дизелях такие марки как BMW, Rover, Ford, MAN, Mitsubishi, Opel, Audi, Mercedes, Renault.

Все поломки, связанные с ТНВД Bosch VP44 можно разделить на механические и электрические. Соответственно, механическая часть насоса подвержена износу и воздействию некачественного топлива. С момента появления ТНВД Bosch VP44 надежность его механической части оставляла желать лучшего. С течением времени насос усиленно дорабатывался, многие запчасти в нем менялись по гарантии. По электрике часто беспокоит элементарное выгорание транзистора на плате электронного блока управления. Теперь обо всем поподробнее.


Электрические неполадки в ТНВД Bosch VP44 и за его пределами

Если двигатель, оснащенный насосом ТНВД Bosch VP44 неожиданно перестал заводиться или просто заглох на ходу, при этом на панели приборов не горит Check Engine, можно смело отправляться к электрикам, занимающихся перепайкой электронного блока управления насоса. В 95% случаев неисправность двигателя и его ТВНД связана со сгоранием выходного транзистора клапана, регулирующего объем впрыска топлива. Это очень распространенная поломка. По мнению части специалистов, этот транзистор выходит из строя из-за перегрева или просто из-за старости. Нередко транзистор блока управления ТНВД Bosch VP44 сгорает при перегрузке, возникающей из-за заклинивания поршня установки опережения зажигания. Специалисты перепаивают (устанавливают новый) транзистор: оригинальный или свой, но с нужными параметрами. Стоимость такой работы составляет около 200 рублей. Как правило, насос при этом снимается с двигателя.

Гораздо реже по электрике беспокоит неисправный (сгоревший) датчик числа оборотов насоса и температуры топлива. Также ТНВД Bosch VP44 может выйти из строя из-за сгорания дозирующего электроклапана. В любом случае, любой ремонт электрической части насоса Bosch VP44 обойдется в 200-400 рублей.


Тут же следует упомянуть о еще одно электрической неполадке, причины возникновения которой находятся за пределами насоса Bosch VP44 и топливной системы. Дело в том, что цикловая подача топлива, зависит от массы засасываемого двигателем воздуха, которую электронный блок управления рассчитывает по показаниям датчика массового расхода воздуха. Этот датчик не отличается надежностью и неприхотливостью. Конструктивно датчик представляет собой особое тонкопленочное покрытие, нагревающееся при работе. Датчик стоит во впускном коллекторе за воздушным фильтром. К сожалению, датчик не очень тщательно защищен от попадании на его чувствительную пленку пыли или масла. Образующаяся на нем грязевая пленка снижает чувствительность сенсора-измерителя. Его реакция снижается или пропадает вовсе, поэтому показания датчика становятся некорректными. Система самодиагностики двигателя может зафиксировать отклонения в показания датчика или же некорректное выходное напряжение. Если напряжение на загрязненном датчике не выходит за рамки корректных параметров, но измеренный им объем проходящего в двигатель воздуха не является правильным, двигатель просто теряет мощность. То есть, по факту двигатель получает достаточно воздуха, но так как датчик массового расхода не видит этого и ошибочного регистрирует меньшую подачу воздуха, то блок управления ТНВД Bosch VP44 соответственно рассчитывает меньшую цикловую подачу топлива. В результате появляются симптомы, характерные для неисправной системы питания (при этом Check Engine может не загораться): снижается отдача двигателя.


Механические неполадки в ТНВД Bosch VP44

Поломки по механической части ТНВД Bosch VP44 гораздо более разнообразны. Но главное отличие в том, что при механических неисправностях мотор продолжает работать, хотя и очень неуверенно и при меньшей мощности.


Неисправности форсунок, работающих в топливной системе с насосом ТНВД Bosch VP44, выражающиеся в неправильном распылении топлива нередко приводит к неравномерному нагреву и перегреву поршней, в результате чего они прогорают или разрушаются.

Стоимость ремонта ТНВД Bosch VP44 значительно снизилась в последние годы. Отремонтировать и восстановить этот насос можно по цене от 200 рублей. Б/ушные насосы VP44 стоят от 400 до 800 рублей.

1

После нескольких часов работы дизелист с грохотом приземлил увесистую деталь на мой паяльный стол. Блок управления насосом был скрыт под массивной алюминиевой крышкой. После разбора и детального осмотра я решился на разбор, терять все равно было нечего, либо починю, либо "приговорю". В работе механики насоса я имел пространственные знания. Моя задача была найти управляющий импульс на злополучный клапан .

2

3

Вскрывать крышку блока пришлось тонким шпателем, чтобы не повредить внутреннее содержимое. После детального осмотра и прозвонки, я обнаружил причину поломки. Ключевой транзистор (управляющий клапаном) был "пробит" - отгорел вывод. Плата компьютера охлаждается проходящей в "теле" насоса соляркой. Причиной поломки мог послужить воздушный пузырь, который образовался после смены топливного фильтра и длительное вращение стартером при этом. Длительное вращение стартером наряду с плохим охлаждением провоцируют локальный перегрев транзистора в пиковых нагрузках. А при старте, для максимальной подачи топлива клапаном, транзистор максимально открыт.

4

Поэтому следует задуматься о том, что после замены фильтра необходимо прокачивать систему. До полного удаления из неё воздуха, и не пытаться прокачать систему питания ТНВД стартером. Кстати, у немцев в баке стоит датчик аварийного уровня топлива в баке (поплавок) который при недостатке топлива снимает питание с блока ЭБУ, что сохраняет ТНВД в целостности, запуск возможен, но только после заправки машины топливом.

5

Менять транзистор на керамической подложке дело безумное, а на подбор выносного и проверку не было времени. Поэтому было решено найти "донора". Была возможность приобрести совершенно новый блок. Но, как потом выяснилось, заставить его работать без специального оборудования нельзя. Необходим стенд для "заливки" в него программного обеспечения, которого у нас в регионе нет. Владельцы засели за газеты и телефоны. Пока они искали, я экспериментировал.
Демонтировал нижний клапан опережения впрыска. Ржавчины там было предостаточно. Это самая нижняя точка насоса – вся грязь скапливается здесь. Ультразвук решил эту проблему.

6

7

Дальше было делом техники пристроить новый "мозг" на насос:

8

Установка на автомобиль заняла еще некоторое время. Запуск произошёл успешно - плата оказалась полностью рабочей. После некоторых корректировок внутреннего давления двигатель заработал правильно. Счастливые владельцы благодарили нас за автомобиль. Я же в свою очередь благодарил Андрея за ценные наставления и поддержку, и телефон с интернетом за обретенных ранее друзей по всей стране.
Так в свое время я познакомился с ТНВД VP44 и возможностью его ремонта.
Всем удачных ремонтов,-


Авторы: Владимир Бекренёв г. Хабаровск, - при поддержке
Андрея Кондрашкина из г. Находки
Источник: (оргинал) .

Топливные насосы высокого давления VP-44 используются на мо­делях дизелей Opel Ecotec, Opel Astra, Audi, Ford, BMW, Daimler-Chrysler. Давление впрыска, развиваемое насосами такого типа достигает 1000 кгс/см2.

Схема топливной системы с этим ТНВД представлена на рисунке:

Система непосредственного впрыска дизельного двигателя с ТНВД VP-44

Рис. Система непосредственного впрыска дизельного двигателя с ТНВД VP-44:
1 – топливный бак; 2 – фильтр тонкой очистки топлива; 3 – ТНВД; 4 – ЭБУ ТНВД; 5 – электромагнитный клапан управления подачей топлива; 6 – электромагнитный клапан угла опережения впрыска; 7 – автомат опережения впрыска; 8 – ЭБУ двигателя; 9 – форсунка с датчиком подъема иглы; 10 – свеча предпускового подогрева с закрытым нагревательным элементом; 11 – ЭБУ свечей накаливания; 12 – датчик температуры охлаждающей жидкости; 13 – датчик частоты вращения коленчатого вала; 14 – датчик температуры воздуха на впуске; 15 – массовый расходомер воздуха; 16 – датчик давления наддува; 17 – турбокомпрессор; 18 – привод клапана системы рециркуляции ОГ; 19 – привод клапана регулирования давления наддува; 20 – вакуумный насос; 21 – аккумуляторная батарея; 22 – приборная панель с указателем расхода топлива, тахометром и т.д.; 23 – датчик положения педали акселератора; 24 – концевой выключатель (на педали сцепления); 25 – контакты стоп-сигнала; 26 – датчик скорости автомобиля; 27 — блок управления круиз-контролем; 28 – компрессор кондиционера; 29 – диагностический дисплей с выводами для диагностического тестера.

Особенностью приведенной системы является совмещенный блок управления как для ТНВД, так и для других систем двигателя. Блок управления состоит из двух частей, оконечные каскады питания электромагнитов которых расположены на корпусе ТНВД.

Общий вид ТНВД VP-44 показан на рисунке:

Топливный насос высокого давления VP-44

Рис. Топливный насос высокого давления VP-44:
1 – топливоподкачивающий насос; 2 – датчик частоты и положения вала насоса; 3 – кулачковая шайба; 4 – блок управления; 5 – штекерная колодка; 6 – нагнетательные плунжеры; 7 – ротор-распределитель; 8 – электромагнитный клапан управления подачей; 9 – нагнетательный клапан; 10 – электромагнитный клапан установки момента начала впрыскивания; 11 – устройство опережения впрыскивания; 12 – датчик угла пово­рота приводного вала ТНВД

Контур низкого давления

Топливоподкачивающий насос 17 в ТНВД VP-44 шиберного типа аналогичный рассмотренным выше. Давление топлива, создаваемое топливоподкачивающим насосом на стороне на­гнетания, зависит от частоты вращения колеса насоса. В то же время это давление при возрастании частоты вращения уве­личивается непропорционально. Клапан регулирования давления 2 распо­лагается в непосредственной близости от топливоподкачивающего насоса. Клапан изменяет давление нагнетания, создаваемое топливоподкачивающим насосом, в зависимости от требуемого расхода топлива.

Топливо от топливоподкачивающего насоса поступает к насосной секции ТНВД и устройству опере­жения впрыски­вания.

Гидравлическая схема ТНВД VP-44

Рис. Гидравлическая схема ТНВД VP-44:
1 – блок управления работой дизеля; 2 – клапан регулирования давления; 3 – поршень клапана регулирования давления; 4 – клапан дросселирования перепуска; 5 – отводной канал; 6 – дроссель; 7 блок управления ТНВД; 8 – поршневой демпфер; 9 – электромагнитный клапан управления подачей; 10 – нагнетательный клапан; 11 – форсунка; 12 – электромагнитный клапан установки момента начала впрыскивания; 13 – ротор-распределитель; 14 – насосная секция ТНВД с радиальным движением плунже­ров; 15 – датчик угла пово­рота приводного вала ТНВД; 16 – устройство опере­жения впрыски­вания; 17 – топливоподкачивающий насос

Если создаваемое давление топлива превышает определенную величину, тор­цевая кромка поршня 3 открывает отверстия расположенные радиально, и через них поток топлива сливается по ка­налам насоса к подводящему пазу. Если давление топлива слишком мало, эти ра­диальные отверстия закрыты вследствие преобладания сил пружины. Предвари­тельный натяг пружины определяет, таким образом, величину давления откры­тия клапана.

Для охлаждения топливоподкачивающего насоса и удаления из него воздуха топливо проходит через привинченный к корпусу насоса клапан дросселирования перепуска 4.

Этот клапан осуществляет отвод топ­лива через отводной канал 5. В корпусе клапана находится нагруженный пружи­ной шарик, который позволяет выте­кать топливу только по достижении опре­деленной величины давления в канале.

Дроссель 6 очень малого диаметра, связанный с линией отвода, расположен в корпусе клапана параллельно основному каналу отвода топлива. Он обеспечивает автоматическое удаление воздуха из на­соса. Весь контур низкого давления ТНВД рассчитан на то, что в топливный бак через клапан дросселирования пере­пуска всегда перетекает некоторое количество топлива.

Контур высокого давления

В контур высокого давления вхо­дят ТНВД, а также узел распределения и регулирования величины и момента на­чала подачи с использованием только од­ного элемента — электромагнитного кла­пана высокого давления.

Насосная секция ТНВД с радиальным движением плунжеров создает требуемое для впрыскивания давление величиной до 1000 кгс/см2. Она приводится через вал и включает в себя:

  • соединительную шайбу
  • башмаки 4 с роликами 2
  • кулачковую шайбу 1
  • нагнетающие плунжеры 5
  • переднюю часть (головку) вала-распределителя 6

Примеры расположения плунжеров

Рис. Примеры расположения плунжеров:
а – для четырех или шести цилиндров; b – для шести цилинд­ров; с – для четырех цилиндров; 1– кулачковая шайба; 2 – ролик; 3 – направляющие пазы приводного вала; 4 – башмак ролика; 5 – нагнетающий плунжер; 6 – вал-распределитель; 7 – камера высокого давления

Крутящий момент от приводного ва­ла передается через соединительную шайбу и шлицевое соединение непосред­ственно на вал-распределитель. Направляющие пазы 3 служат для того, чтобы через башмаки 4 и сидящие в них ролики 2 обеспечить работу нагнета­ющих плунжеров 5 сообразно внутрен­нему профилю кулачковой шайбы 1. Ко­личество кулачков на шайбе соответст­вует числу цилиндров двигателя. В кор­пусе вала-распределителя нагнетающие плунжеры расположены радиально, что и дало название этому типу ТНВД. На вос­ходящем профиле кулачка плунжеры со­вместно выдавливают топливо в цент­ральную камеру высокого давления 7. В зависимости от числа цилиндров двигателя и условий его применения сущест­вуют варианты ТНВД с двумя, тремя или четырьмя нагнетающими плунжерам.

Корпус-распределитель состоит из:

  • фланца 6
  • плотно вставленной в фланец распредели­тельной втулки 3
  • расположенной в распределитель­ной втулке задней части вала-распределителя 2
  • запирающей иглы 4 электромагнит­ного клапана 7 высокого давления
  • аккумулирующей мембраны 10, раз­деляющей полости подкачки и слива
  • штуцера 16 магистрали высокого давления с нагнетательным клапаном 15

Корпус-распределитель

Рис. Корпус-распределитель: а — фаза наполнения b — фаза нагнетания:
1 – плунжер; 2 – вал-распредели­тель; 3 – распределительная втулка; 4 – запирающая игла электромагнитного клапана высокого давления; 5 – канал обратного слива топлива; 6 – фланец; 7 – электромагнитный клапан высокого давления; 8 – канал камеры вы­сокого давления; 9 – кольцевой канал впуска топлива; 10 – аккумулирующая мембрана, разделяющая полости подкачки и слива; 11 – полость за мемб­раной; 12 – камера низкого давления; 13 – распределительная канавка; 14 – выпускной канал; 15 – нагнетательный клапан; 16 – штуцер магистрали высокого давления

В фазе наполнения на нис­ходящем профиле кулачков радиально движущиеся плунжеры 1 перемещаются наружу, к поверхности кулачковой шай­бы. Запирающая игла 4 при этом находится в свободном состоянии, открывая канал впуска топлива. Через камеру низкого давления 12, кольцевой канал 9 и канал иглы топливо направляется от топливоподкачивающего насоса по каналу 8 вала-распределителя и заполняет камеру высокого давления. Излишек топлива вытекает через канал 5 обратного слива.

В фазе нагнетания плунже­ры 1 при закрытой игле 4 перемещаются на восходящем профиле кулачков к оси вала-распределителя, повышая давление в камере высокого давления.

Благодаря этому топливо под высоким давлением движется по каналу 8 ка­меры высокого давления. Затем топливо через распределительную канавку 13, ко­торая в этой фазе соединяет вал-распре­делитель 2 с выпускным каналом 14, шту­цер 16 с нагнетательным клапаном 15, ма­гистраль высокого давления и форсунку поступает в камеру сгорания двигателя.

Дозирование топлива с помощью электромагнитного клапана высокого давления

Для дозирования цикловой подачи в кон­тур высокого давления ТНВД встроен электромагнитный клапан высокого давления 7.

К электромагнитному клапану вы­сокого давления по сигналу блока управ­ления ТНВД в катушку электромагнита подается напряжение, и якорь переме­щает иглу 4, прижимая ее к седлу. Если игла прижата к седлу, топливо поступает только в выпускной канал высокого давления 14 соединенный с нагнетательным клапаном 15, где давление резко повышается, а от него к форсунке. Дозирование подачи топлива определяется интервалом между моментом начала подачи и моментом открытия электромагнитного клапана и на­зывается продолжительностью подачи. Продолжительность закрытия электро­магнитного клапана, определяемая блоком управления, регулирует таким об­разом величину цикловой подачи топли­ва. После окончания впрыска, электромагнит клапана обесточивается, при этом электромагнитный клапан высокого давления открывается, и давление в контуре снижается, прекращая подачу топлива к форсунке.

Избыточное топливо, которое нагне­тается вплоть до прохождения роликом плунжера верхней точки профиля кулач­ка, направляется через специальный ка­нал в пространство за аккумулирующей мембраной. Скачки высокого давления, которые при этом возникают в контуре низкого давления, демпфируются акку­мулирующей мембраной. Кроме того, это пространство сохраняет аккумулирован­ное топливо для процесса наполнения перед последующим впрыскиванием.

Для остановки двигателя с помощью электромагнитного клапана полностью прекращается нагнетание под высоким давлением. Следовательно, не требуется дополнительный остановочный клапан, как это имеет место в распределительных ТНВД с управлением регулирующей кромкой.

Демпфирование волн давления с помощью нагнетательного клапана с дросселированием обратного потока.

Нагнетательный клапан 15 с дросселирова­нием обратного потока в конце очередного впрыскивания топлива предотвращает новое открытие распылителя форсунки, что исключает появление подвпрыскивания, которое возможно в ре­зультате появления волн давления или их отражений. Подвпрыскивание отрица­тельно сказывается на токсичности ОГ.

С началом подачи конус клапана открывает клапан. Теперь топливо нагнетается через штуцер и магистраль высокого давления к форсунке. По окончании на­гнетания давление топлива резко падает, и возвратная пружина прижимает ко­нус клапана к его седлу. Обратные вол­ны давления, возникающие при закры­тии форсунки, гасятся дросселем нагнетательного клапана, что предотвращает подвпрыскивание топлива в камеру сгорания.

Устройство опережения впрыскивания топлива

Наиболее благоприятно процесс сгорания, равно как и лучшая отдача дизеля по мощности, протекает только в том случае, когда момент начала сгорания соответствует определенному положению коленчатого вала или поршня в цилиндре Задачей устройства опережения впрыскивания является увеличение угла начала подачи топлива при повышении частоты вращения коленчатого вала. Это устройство, состоящее из датчика угла поворота приводного вала ТНВД, блока управления и электромагнитного клапана установки момента начала впрыскивания, обеспечивает оптимальный момент начала впрыскивания соот­ветственно условиям эксплуатации двигателя, чем компенсирует временной сдвиг, определяемый сокращением пе­риода впрыскивания и воспламенения при увеличении частоты вращения.

Устройство опережения впрыскивания, оснащенное гидравлическим приводом, встроено в нижнюю часть корпуса ТНВД поперек его продольной оси.

Устройство опережения впрыскивания

Рис. Устройство опережения впрыскивания:
1 – кулачковая шайба; 2 – шаровая цапфа; 3 – плунжер установки угла опережения впрыскивания; 4 – подводной/отвод­ной канал; 5 – регулировочный клапан; 6 – шиберный топливоподкачивающий насос; 7 – выход топлива; 8 – вход топлива; 9 – подвод от топлив­ного бака; 10 – пружина управля­ющего поршня; 11 – возвратная пружина; 12 – управляющий поршень; 13 – кольцеобразная камера гидравли­ческого упора; 14 – дроссель; 15 – электромагнитный клапан установки момента начала впрыскивания (в закрытом положении)

Кулачковая шайба 1 входит своей ша­ровой цапфой 2 в поперечное отверстие плунжера 3 так, что поступательное дви­жение последнего превращается в поворот кулачковой шайбы. В середине плунжера находится регулировочный клапан 5, кото­рый открывает и закрывает управляющие отверстия в плунжере. По оси плунжера 3 расположен нагруженный пружиной 10 управляющий поршень 12, который задает положение регулировочного клапана.

Поперек оси плунжера находится электромагнитный клапан 15 установки момента начала впрыскивания. Блок управления ТНВД воздействует на плунжер устройства опережения впры­скивания с помощью этого клапана (рис. 5.50), на который непрерыв­но подаются импульсы тока постоянной частоты и переменной скважности. Клапан изменяет давление, действующее на управляю­щий поршень.

Электромагнитный клапан установки момента начала впрыскивания

Рис. Электромагнитный клапан установки момента начала впрыскивания:
1 – седло клапана; 2 – направление закрытия; 3 – игла клапана; 4 – якорь электромаг­нита; 5 – катушка; 6 – электромагнит

Регулирование начала впрыскивания

В зависимости от условий эксплуатации двигателя (нагрузка, частота вращения коленчатого вала, температура охлажда­ющей жидкости) блок управления рабо­той дизеля устанавливает не­обходимый угол опережения впрыскива­ния, который определяется соответству­ющим полем характеристик. Для обеспечения необходимого угла опережения впрыскивания кулачковая шайба поворачивается на определенный угол.

Регулятор начала впрыскивания в блоке управления ТНВД постоянно срав­нивает действительное значение момента начала впрыскивания с заданным. Если различие этих сигналов выше допусти­мого, регулятор изменяет момент начала впрыскивания с помощью электромаг­нитного клапана установки момента на­чала впрыскивания. Информацию о дей­ствительном моменте начала впрыскива­ния передает сигнал датчика утла поворо­та приводного вала ТНВД или, в качестве альтернативы, сигнал датчика подъема иглы распылителя форсунки.

Установка раннего опережения впрыскивания

Установка позднего опережения впрыскивания

Электромагнитный клапан 15 установки момента начала впрыскивания открыва­ется, если он воспринимает сигнал от блока управления ТНВД. При его открытии снижается управляющее давление в кольцеобразной камере 13 гидравлического упора.

Регулирование управляющего давления

Полный спектр услуг по диагностике, ремонту и обслуживанию дизельной топливной аппаратуры

  • О техцентре
  • Акции
  • Виды работ
    • Компьютерная диагностика
    • Проверка (ремонт) форсунок
    • Проверка (ремонт) насос-форсунок
    • Проверка и ремонт ТНВД
    • Снятие-установка компонентов топливной системы
    • Комплексная промывка топливной системы
    • Сажевый фильтр с каталитическим покрытием
    • Система впрыска дизельного топлива насос-форсунка
    • Система дизельного впрыска Common Rail
    • ТНВД Bosch VP44. Устройство и принцип действия
    • Топливные системы насос-форсунка-трубопровод (PLD).

    Поиск по сайту

    tnvd-Bosch-VP44-dieselmotors.by

    Общие сведения

    В системе механического впрыска дизельного топлива BOSCH VP44 форсунки открываются под действием давления создаваемым ТНВД. Момент впрыска и количество впрыскиваемого топлива также задаёт ТНВД который в свою очередь управляется электронным блоком управления. Давление впрыска, развиваемое насосами такого типа достигает 1000 бар. Такие насосы используются на моделях дизелей Opel, Audi, Ford, Nissan, BMW, Rover.

    Устройство

    sistema-vpryska-dvigatelya-dieselmotors.by

    Система непосредственного впрыска дизельного двигателя с ТНВД VP-44:

    1 – топливный бак; 2 – фильтр тонкой очистки топлива; 3 – ТНВД; 4 – ЭБУ ТНВД; 5 – электромагнитный клапан управления подачей топлива; 6 – электромагнитный клапан угла опережения впрыска; 7 – автомат опережения впрыска; 8 – ЭБУ двигателя; 9 – форсунка с датчиком подъема иглы; 10 – свеча предпускового подогрева с закрытым нагревательным элементом; 11 – ЭБУ свечей накаливания; 12 – датчик температуры охлаждающей жидкости; 13 – датчик частоты вращения коленчатого вала; 14 – датчик температуры воздуха на впуске; 15 – массовый расходомер воздуха; 16 – датчик давления наддува; 17 – турбокомпрессор; 18 – привод клапана системы рециркуляции ОГ; 19 – привод клапана регулирования давления наддува; 20 – вакуумный насос; 21 – аккумуляторная батарея; 22 – приборная панель с указателем расхода топлива, тахометром и т.д.; 23 – датчик положения педали акселератора; 24 – концевой выключатель (на педали сцепления); 25 – контакты стоп-сигнала; 26 – датчик скорости автомобиля; 27 — блок управления круиз-контролем; 28 – компрессор кондиционера; 29 – диагностический дисплей с выводами для диагностического тестера

    radialno-porshneviy-raspredelitelny-tnvd-dieselmotors.by

    Радиально-поршневой распределительный ТНВД представляет собой насос впрыска с электронным регулированием, имеющий собственный блок управления. Насос создаёт давление впрыска 1000 бар. Высокое давление дизельного топлива позволяет достичь мелкодисперсного распыления топлива. Это приводит к более полному сгоранию топливно-воздушной смеси и меньшему содержанию вредных веществ в выхлопных газах.

    Основные задачи радиально-поршневого распределительного дизельного ТНВД: забор топлива из топливного бака, сжатие топлива до

    tnvd2-Bosch-VP44-dieselmotors.by

    1000 бар, распределение топлива по цилиндрам. Топливо от топливоподкачивающегонасоса поступает к насос но й секции ТНВД и устройст ву опережения впрыска.

    tnvd3-Bosch-VP44-dieselmotors.by

    1 – блок управления работой дизеля; 2 – клапан регулирования давления; 3 – поршень клапана регулирования давления; 4 – клапан дросселирования пе репуска; 5 – отводной канал; 6 – дроссель; 7 блок управления ТНВД; 8 – поршневой демпфер; 9 – электромагнитный клапан управления подачей; 10 – нагнета тельный клапан; 11 – форсунка; 12 – электромагнитный клапан установки момента начала впрыскивания; 13 – ротор-распределитель; 14 – насосная секция ТНВД с радиальным движением плунжеров; 15 – датчик угла поворота приводного вала ТНВД; 16 – устройство опережения впрыскивания; 17 – топливоподкачивающий насос

    tnvd4-Bosch-VP44-dieselmotors.by

    а – для четырех или шести цилиндров; b – для шести цилинд¬ров; с – для четырех цилиндров; 1– кулачковая шайба; 2 – ролик; 3 – направля ющие пазы приводного вала; 4 – башмак ролика; 5 – нагнетающий плунжер; 6 – вал-распределитель; 7 – камера высокого давления. Количество кулачков на шайбе соответствует числу цилиндров двигателя. В корпусе вала-распределителя нагнетающие плунжеры распо лож ены радиально, что и дало название этому типу ТНВД. На восходящем профиле кулачка плунжеры совместно выдавливают топливо в центральную камеру высокого давления 7. В зависимости от числа цилиндров двигателя и условий его применения существуют варианты ТНВД с двумя, тремя или четырьмя нагнетающими плунжерами.

    tnvd5-Bosch-VP44-dieselmotors.by

    Корпус-распределитель: а — фаза наполнения b — фаза нагнетания: 1 – плунжер; 2 – вал-распределитель; 3 – распределительная втулка; 4 – запирающая игла электромагнитного клапана высокого давления; 5 – канал обратного слива топлива; 6 – фланец; 7 – электромагнитный клапан высокого давления; 8 – канал камеры высокого давления; 9 – кол ьцевой канал впуска топлива; 10 – аккумулирующая мембрана, разделяющая полости подкачки и слива; 11 – полость за мембраной; 12 – камера низкого давления; 13 – распределительная канавка; 14 – выпускной канал; 15 – нагнетательный клапан; 16 – штуцер магистрали высокого давления

    В фазе наполнения (а) на нисходящем профиле кулачков радиально движущиеся плунжеры 1 перемещаются наружу, к поверхности кулачковой шайбы. Запирающая игла 4 при этом находится в свободном состоянии, открывая канал впуска топлива. Через камеру низкого давления 12, кольцевой канал 9 и канал иглы топливо направляется от топливоподкачивающего насоса по каналу 8 вала-распределителя и заполняет камеру высокого давления. Излишек топлива вытекает через канал 5 обратного слива.
    В фазе нагнетания (b) плунжеры 1 при закрытой игле 4 перемещаются на восходящем профиле кулачков к оси вала-распределителя, повышая давление в камере высокого давления. Для дозирования цикловой подачи в контур высокого давления ТНВД встроен электромагнитный клапан высокого давления 7.
    К электромагнитному клапану высокого давления по сигналу блока управления ТНВД в катушку электромагнита подается напряжение, и якорь перемещает иглу , прижимая ее к седлу . Если игла прижата к седлу, топливо поступает только в выпускной канал высокого давления 14 соединенный с нагнетательным клапаном 15, где давление резко повышается, а от него к форсунке. Дозирование подачи топлива определяется интервалом между моментом начала подачи и моментом открытия электромагнитного клапана и называется продолжительностью подачи. Продолжительность закрытия электромагнитного клапана, определяемая блоком управления, регулирует таким образом величину цикловой подачи топлива. После оконч ания впрыска, электромагнит клапана обесточивается, при этом электромагнитный клапан высокого давления открывается, и давление в контуре снижается, прекращая подачу топлива к форсунке.

    Наиболее благоприятно процесс сгорания, равно как и лучшая отдача дизеля по мощности, протекает только в том случае, когда момент начала сгорания соответствует определенному положению коленчатого вала или поршня в цилиндре. Задачей устройства опережения впрыскивания является увеличение угла начала подачи топлива при повышении частоты вращения коленчатого вала. Это устройство, состоящее из датчика угла поворота приводного вала ТНВД, блока управления и электромагнитного клапана установки момента начала впрыскивания, обеспечивает оптимальн ый момент начала впрыскивания соответственно условиям эксплуатации двигателя, чем компенсирует временной сдвиг, определяемый сокращением периода впрыскивания и воспламенения при увеличении частоты вращения.

    Устройство опережения впрыскивания, оснащенное гидравлическим приводом, встроено в нижнюю часть корпуса ТНВД поперек его продольно й оси.

    Устройство опережения впрыскивания:

    tnvd6-Bosch-VP44-dieselmotors.by

    1 – кулачковая шайба; 2 – шаровая цапфа; 3 – плунжер установки угла опережения впрыскивания; 4 – подводной/отвод¬ной канал; 5 – регулировочный клапан; 6 – шиберный топливоподкачивающий насос; 7 – выход топлива; 8 – вход топлива; 9 – подвод от топлив¬ного бака; 10 – пружина управля¬ющего поршня; 11 – возвратная пружина; 12 – управляющий поршень; 13 – кольцеобразная камера гидравли¬ческого упора; 14 – дроссель; 15 – электромагнитный клапан установки момента начала впрыскивания (в закрытом положении)

    Кулачковая шайба 1 входит своей шаровой цапфой 2 в поперечное отверстие плунжера 3 так, что поступательное движение последнего превращается в поворот кулачковой шайбы. В середине плунжера находится регулировочный клапан 5, который открывает и закрывает управляющие отверстия в плунжере. По оси плунжера 3 расположен нагруженный пружиной 10 управляющий поршень 12, который задает положение регулировочного клапана.

    Поперек оси плунжера находится электромагнитный клапан 15 установки момента начала впрыскивания. Блок управления ТНВД воздействует на плунжер устройства опережения впрыскивания с помощью этого клапана, на который непрерывно подаются импульсы тока постоянной частоты и переменной скважности. Клапан изменяет давление, действующее на управляющий поршень.

    Электромагнитный клапан установки момента начала впрыскивания:

    1 – седло клапана; 2 – направление закрытия; 3 – игла клапана; 4 – якорь электромагнита; 5 – катушка; 6 – электромагнит.

    tnvd7-Bosch-VP44-dieselmotors.by

    В зависимости от условий эксплуатации двигателя (нагрузка, частота вращения коленчатого вала, температура

    1

    После нескольких часов работы дизелист с грохотом приземлил увесистую деталь на мой паяльный стол. Блок управления насосом был скрыт под массивной алюминиевой крышкой. После разбора и детального осмотра я решился на разбор, терять все равно было нечего, либо починю, либо "приговорю". В работе механики насоса я имел пространственные знания. Моя задача была найти управляющий импульс на злополучный клапан .

    2

    3

    Вскрывать крышку блока пришлось тонким шпателем, чтобы не повредить внутреннее содержимое. После детального осмотра и прозвонки, я обнаружил причину поломки. Ключевой транзистор (управляющий клапаном) был "пробит" - отгорел вывод. Плата компьютера охлаждается проходящей в "теле" насоса соляркой. Причиной поломки мог послужить воздушный пузырь, который образовался после смены топливного фильтра и длительное вращение стартером при этом. Длительное вращение стартером наряду с плохим охлаждением провоцируют локальный перегрев транзистора в пиковых нагрузках. А при старте, для максимальной подачи топлива клапаном, транзистор максимально открыт.

    4

    Поэтому следует задуматься о том, что после замены фильтра необходимо прокачивать систему. До полного удаления из неё воздуха, и не пытаться прокачать систему питания ТНВД стартером. Кстати, у немцев в баке стоит датчик аварийного уровня топлива в баке (поплавок) который при недостатке топлива снимает питание с блока ЭБУ, что сохраняет ТНВД в целостности, запуск возможен, но только после заправки машины топливом.

    5

    Менять транзистор на керамической подложке дело безумное, а на подбор выносного и проверку не было времени. Поэтому было решено найти "донора". Была возможность приобрести совершенно новый блок. Но, как потом выяснилось, заставить его работать без специального оборудования нельзя. Необходим стенд для "заливки" в него программного обеспечения, которого у нас в регионе нет. Владельцы засели за газеты и телефоны. Пока они искали, я экспериментировал.
    Демонтировал нижний клапан опережения впрыска. Ржавчины там было предостаточно. Это самая нижняя точка насоса – вся грязь скапливается здесь. Ультразвук решил эту проблему.

    6

    7

    Дальше было делом техники пристроить новый "мозг" на насос:

    8

    Установка на автомобиль заняла еще некоторое время. Запуск произошёл успешно - плата оказалась полностью рабочей. После некоторых корректировок внутреннего давления двигатель заработал правильно. Счастливые владельцы благодарили нас за автомобиль. Я же в свою очередь благодарил Андрея за ценные наставления и поддержку, и телефон с интернетом за обретенных ранее друзей по всей стране.
    Так в свое время я познакомился с ТНВД VP44 и возможностью его ремонта.
    Всем удачных ремонтов,-


    Авторы: Владимир Бекренёв г. Хабаровск, - при поддержке
    Андрея Кондрашкина из г. Находки
    Источник: (оргинал) .

    Читайте также: