Замкнутая петля по дк для коррекции топливоподачи приора

Добавил пользователь Morpheus
Обновлено: 20.09.2024

Самым эффективным решением проблемы снижения токсичности отработавших газов является использование каталитического нейтрализатора, который устанавливается в системе выпуска двигателя. В идеале состав смеси, подаваемой в цилиндры, должен быть стехиометрическим (коэффициент избытка воздуха λ=1). Для нового исправного автомобиля расчет топливоподачи по сигналам ДМРВ и ДПКВ обеспечивает решение этой задачи. Но с пробегом за счет механического износа деталей двигателя, за счет старения чувствительных элементов датчиков или неисправностей отдельных компонентов СУД реальный состав топливовоздушной смеси в цилиндрах будет отклоняться от стехиометрического. Чтобы информировать контроллер о текущем отклонении состава смеси, в системе управления используется датчик кислорода который устанавливается в выпускной системе двигателя перед нейтрализатором.

В системе распределенного впрыска под нормы токсичности Евро–3 применяются 2 датчика:

- управляющий датчик кислорода (УДК 2112–3850010–20;

- диагностический датчик кислорода (ДДК) 2112–3850010–30.

УДК устанавливается в нижней части приемной требы глушителя, ДДК – после нейтрализатора, оба датчика имеют одинаковый принцип работы.

Контроллер использует показания УДК для поддержания постоянного стехиометрического состава смеси (см. описание работы датчика кислорода).



Датчик кислорода реагирует на концентрацию кислорода в отработавших газах, которая, в свою очередь, напрямую зависит от коэффициента избытка воздуха λ. Наружный электрод ДК 2 находится в потоке отработавших газов 7, а внутренний 9 соприкасается с воздухом из атмосферы 8. Основа ДК – специальная керамика 1, внешние поверхности которой оснащены газопроницаемыми платиновыми электродами. Также на рисунке обозначены: 3, 4 – контакты; 5 – выпускная труба; 6 – керамический защитный слой.

Принцип действия ДК

Действие ДК основано на том, что керамический материал является пористым и допускает диффузию молекул кислорода (твердый электролит). При высокой температуре керамика становится проводником электричества. Если концентрация кислорода в отработавших газах не равна концентрации кислорода в окружающем воздухе, то на электродах ДК возникает электрическое напряжение. Напряжение и внутреннее сопротивление ДК зависят от температуры керамики. Сигнал ДК является достоверным, только когда датчик прогрет выше 350°С. Для быстрого прогрева ДК после запуска двигателя используется нагревательный элемент, который обеспечивает температурный режим датчика при холодных отработавших газах.




Диагностический датчик кислорода.

Системы управления двигателем с одним (управляющим) датчиком кислорода нацелены на выполнение требований европейского стандарта по токсичности отработавших газов Евро–II. Для того чтобы соответствовать более жесткому стандарту Евро–III, система управления должна быть в состоянии контролировать работоспособность основных компонентов, неисправность которых влечет за собой увеличение вредных выбросов в атмосферу. В свете этих требований центральным объектом для бортовой диагностики становится каталитический нейтрализатор. Чтобы оценивать эффективность работы нейтрализатора, в системе выпуска за нейтрализатором устанавливается второй диагностический датчик кислорода. Его конструкция и характеристики идентичны первому датчику кислорода.

Кроме основной задачи, сигнал диагностического датчика кислорода используется:

Ошибка P0134 распространенная и довольно простая. Она сообщает, что информация от первого датчика кислорода в системе выхлопа поступает на электронный блок управления неверная.

Диагностируется ошибка P0134 следующим образом:



Информация о низком уровне поступающего сигнала с датчика кислорода передается в память и записывается;

Как проводится самодиагностика Нива Шевроле и основные коды ошибок

А еще интересно: Как прокачать тормоза на Шевроле Нива правильно

Почему возникает ошибка P0134

Причин, которые способны привести к ошибке P0134 не так уж и много. Она конкретно указывает на неправильный сигнал, получаемый с определенного датчика. Исходя из этого, можно сделать вывод, что причины ошибки P0134 следующие:

  • Выход из строя датчика кислорода;
  • Обрыв проводов;
  • Короткое замыкание.

Диагностическое оборудование упрощает определение причины неисправности. Если помимо ошибки P0134 инструмент диагностики сообщит о наличии ошибки P0171, это говорит о том, что неисправность связана с обрывом или коротким замыванием. Как известно, ошибка P0171 сообщает о бедной смеси в двигателе. Она возникает совместно с ошибкой P0134 при названных выше неисправностях, поскольку первый датчик кислорода в цепи выхлопа — управляющий для подачи смеси. Соответственно, если он перестает передавать информацию, электронный блок управления снизит количество подаваемого топлива, из-за чего топливовоздушная смесь будет обедненной – это необходимо для предотвращения возможной поломки катализатора.

Стоит отметить, что наиболее часто проблема P0134 связана непосредственно с выходом из строя самого датчика. Не более чем в 5% случаев неисправность возникает по причине короткого замыкания, обрыва в цепи или окисления контактов.

Что делать, если возникла ошибка P0134


Перед тем как приступать к диагностике датчика вольтметром, нужно его визуально осмотреть. Если имеются неисправности с нагревателем датчика или смесь излишне обогащена, на датчике будут следы сажи, которая часто засоряет элемент, вследствие чего он выходит из строя. Еще одной распространенной причиной поломки лямбда-зонда является повреждение его свинцом, излишне содержащимся в используемом бензине. Если же на датчике кислорода присутствуют белые отложения, это говорит о плохих присадках в используемом топливе.

Если внешний осмотр датчика кислорода не помог выявить проблему, можно переходить к его проверке вольтметром. Диагностика датчика кислорода происходит следующим образом:

  1. Двигатель автомобиля необходимо прогреть до рабочей температуры;
  2. Далее щупы мультиметра, переведенного в режим вольтметра, подключаются между сигнальным проводом и проводом массы;
  3. Обороты двигателя автомобиля повышаются до 2500-3000 за минуту.



В момент проведения теста необходимо следить за показателями сигнала с датчика кислорода. Полученные данные сравниваются с эталонными значениями, приведенными в книге по технической эксплуатации автомобиля. Обычно, сигнал должен варьироваться от 0,2 до 0,9 Вольт.

Обратите внимание: В редких ситуациях выход из строя датчика может быть связан не с отсутствием изменения сигнала или его варьированием в неправильных значениях, а с медленным откликом лямбда-зонда. Считается, что каждую секунду должно происходить изменение показаний измерения на прогретом двигателе.

Согласно общему правилу, датчик кислорода необходимо менять каждые 100 тысяч километров пробега. Поэтому, если возникла ошибка P0134, и пробег машины приближается к 100 тысячам или преодолел данное значение, можно смело менять датчик кислорода без проверки, поскольку вскоре он все равно выйдет из строя.

(410 голос., средний: 4,56 из 5)

Похожие записи
Ошибки 84 и 89 на Chevrolet Cruze: что означают и как от них избавиться
Ошибка P0170 – нарушение соотношения смеси

Диагностические коды контроллера МЕ17.9.71

Р0030 Нагреватель ДК до нейтрализатора, цепь неисправна

Р0031 Нагреватель ДК до нейтрализатора, замыкание цепи управления на массу

Р0032 Нагреватель ДК до нейтрализатора, замыкание цепи управления на бортовую сеть

Р0036 Нагреватель ДК после нейтрализатора, цепь неисправна

Р0037 Нагреватель ДК после нейтрализатора, замыкание цепи управления на массу

Р0038 Нагреватель ДК после нейтрализатора, замыкание цепи управления на бортовую сеть

Р0101 Цепь ДМРВ, выход сигнала из допустимого диапазона

Р0102 Цепь датчика массового расхода воздуха, низкий уровень сигнала

Р0103 Цепь датчика массового расхода воздуха, высокий уровень сигнала

Р0112 Цепь датчика температуры впускного воздуха, низкий уровень сигнала

Р0113 Цепь датчика температуры впускного воздуха, высокий уровень сигнала

Р0116 Цепь ДТОЖ, выход сигнала из допустимого диапазона

Р0117 Цепь ДТОЖ, низкий уровень сигнала

Р0118 Цепь ДТОЖ, высокий уровень сигнала

А еще интересно: Двигатель 21214 Особенности характеристики и тюнинг

Р0122 Цепь ДПДЗ А, низкий уровень сигнала

Р0123 Цепь ДПДЗ А, высокий уровень сигнала

Р0130 Датчик кислорода до нейтрализатора неисправен

Р0131 Цепь ДК до нейтрализатора, низкий уровень выходного сигнала

Р0132 Цепь ДК до нейтрализатора, высокий уровень выходного сигнала

Р0133 Цепь ДК до нейтрализатора, медленный отклик на изменение состава смеси

Р0134 Цепь датчика кислорода до нейтрализатора неактивна

Р0135 Датчик кислорода до нейтрализатора, нагреватель неисправен

Р0136 Датчик кислорода после нейтрализатора неисправен

Р0137 Цепь ДК после нейтрализатора, низкий уровень сигнала

Р0138 Цепь ДК после нейтрализатора, высокий уровень сигнала

Р0140 Цепь датчика кислорода после нейтрализатора неактивна

Р0141 Датчик кислорода после нейтрализатора, нагреватель неисправен

Р0171 Система топливоподачи слишком бедная

Р0172 Система топливоподачи слишком богатая

Р0201 Форсунка цилиндра 1, цепь неисправна

Р0202 Форсунка цилиндра 2, цепь неисправна

Р0203 Форсунка цилиндра 3, цепь неисправна

Р0204 Форсунка цилиндра 4, цепь неисправна

Р0217 Температура двигателя выше допустимой

Р0222 Цепь ДПДЗ В, низкий уровень сигнала

Р0223 Цепь ДПДЗ В, высокий уровень сигнала

Р0261 Форсунка цилиндра 1, замыкание цепи управления на массу

Р0262 Форсунка цилиндра 1, замыкание цепи управления на бортовую сеть

Р0264 Форсунка цилиндра 2, замыкание цепи управления на массу

Р0265 Форсунка цилиндра 2, замыкание цепи управления на бортовую сеть

Р0267 Форсунка цилиндра 3, замыкание цепи управления на массу

Р0268 Форсунка цилиндра 3, замыкание цепи управления на бортовую сеть

Р0270 Форсунка цилиндра 4, замыкание цепи управления на массу

Р0271 Форсунка цилиндра 4, замыкание цепи управления на бортовую сеть

Р0300 Обнаружены случайные/множественные пропуски воспламенения

Р0301 Цилиндр 1, обнаружены пропуски воспламенения

Р0302 Цилиндр 2, обнаружены пропуски воспламенения

Р0303 Цилиндр 3, обнаружены пропуски воспламенения

Р0304 Цилиндр 4, обнаружены пропуски воспламенения

Р0327 Цепь датчика детонации, низкий уровень сигнала

Р0335 Цепь датчика положения коленчатого вала неисправна

Р0340 Датчик фаз неисправен

Р0351 Катушка зажигания цилиндра 1-4, обрыв цепи управления

Р0352 Катушка зажигания цилиндра 2-3, обрыв цепи управления

Р0363 Обнаружены пропуски воспламенения, отключена топливоподача в неработающих цилин-драх

Р0422 Эффективность нейтрализатора ниже порога

Р0441 Система улавливания паров бензина, неверный расход воздуха через КПА

Р0444 Клапан продувки адсорбера, обрыв цепи управления

Р0458 Клапан продувки адсорбера, замыкание цепи управления на массу

Р0459 Клапан продувки адсорбера, замыкание цепи управления на бортовую сеть

Р0480 Реле вентилятора 1, обрыв цепи управления

Р0481 Реле вентилятора 2, обрыв цепи управления

Р0500 Датчик скорости автомобиля неисправен

Р0501 Датчик скорости автомобиля, выход сигнала из допустимого диапазона

Р0532 Датчик давления системы кондиционирования, низкий уровень сигнала

Р0533 Датчик давления системы кондиционирования, высокий уровень сигнала

Р0560 Напряжение бортовой сети автомобиля

Р0561 Напряжение бортовой сети нестабильно

Р0562 Напряжение бортовой сети, низкий уровень

Р0563 Напряжение бортовой сети, высокий уровень

Р0606 Контроллер СУД, неисправность АЦП

Р0615 Доп. реле стартера, обрыв цепи управления

Р0616 Доп. реле стартера, замыкание цепи управления на массу

Р0617 Доп. реле стартера, замыкание цепи управления на бортовую сеть

Р0627 Реле бензонасоса, обрыв цепи управления

А еще интересно: Двигатель Нивы Шевроле, Характеристики и Тюнинг

Р0628 Реле бензонасоса, замыкание цепи управления на массу

P0629 Реле бензонасоса, замыкание цепи управления на бортовую сеть

Р0645 Реле муфты компрессора кондиционера, обрыв цепи управления

Р0646 Реле муфты компрессора кондиционера, замыкание цепи управления на массу

P0647 Реле муфты компрессора кондиционера, замыкание цепи управления на бортовую сеть

Р0691 Реле вентилятора 1, замыкание цепи управления на массу

Р0692 Реле вентилятора 1, замыкание цепи управления на бортовую сеть

Р0693 Реле вентилятора 2, замыкание цепи управления на массу

Р0694 Реле вентилятора 2, замыкание цепи управления на бортовую сеть

Р0830 Выключатель педали сцепления, цепь неисправна

Р1335 Мониторинг управления приводом дроссельной заслонки, положение дроссельной заслонки вне допустимого диапазона

Р1389 Мониторинг управления приводом дроссельной заслонки, обороты двигателя вне допустимого диапазона

Р1390 Мониторинг управления приводом дроссельной заслонки, некорректная реакция на неисправность в системе

Р1391 Мониторинг управления приводом дроссельной заслонки, отсутствует реакция на неисправность в системе

Р1545 Привод дроссельной заслонки, положение заслонки вне допустимого диапазона

Р1558 Привод дроссельной заслонки, возвратная пружина неисправна

Р1559 Привод дроссельной заслонки, положение заслонки в состоянии покоя вне допустимого диапазона

Р1564 Система управления приводом дроссельной заслонки, адаптация положения нуля заслонки прервана в связи с пониженным напряжением бортсети

P1570 Иммобилизатор, цепь неисправна

Р1578 Система управления приводом дроссельной заслонки, величина адаптации положения нуля вне допустимого диапазона

Р1579 Система управления приводом дроссельной заслонки, адаптация положения нуля заслонки прервана в связи с внешними условиями

Р1602 Контроллер СУД, пропадание напряжения питания

Р1603 Мониторинг управления приводом дроссельной заслонки, неисправность модуля мониторинга

Р2100 Электропривод дроссельной заслонки, обрыв цепи управления

Р2101 Электропривод дроссельной заслонки, цепь управления неисправна

Р2122 Цепь датчика положения педали А, низкий уровень сигнала

Р2123 Цепь датчика положения педали А, высокий уровень сигнала

Р2127 Цепь датчика положения педали В, низкий уровень сигнала

Р2128 Цепь датчика положения педали В, высокий уровень сигнала

Р2176 Система управления приводом дроссельной заслонки, адаптация положения нуля заслонки не выполнена

Р2187 Система топливоподачи слишком бедная на холостом ходу

Р2188 Система топливоподачи слишком богатая на холостом ходу

Р2301 Катушка зажигания цилиндра 1-4, замыкание цепи управления на бортовую сеть

Р2304 Катушка зажигания цилиндра 2-3, замыкание цепи управления на бортовую сеть

При очистке (удалении) кодов неисправностей из памяти контроллера с помощью диагностического оборудования сигнализатор гаснет.

В интернете мне очень часто попадаются криво переведенные статьи о трактовке показаний различных датчиков, причем их репостят все подряд без разбора и тем самым еще больше путают народ. Поэтому я нашел и перевел правильную статью о топливной коррекции (Fuel Trim), постарался сделать это близко к тексту но не теряя при этом смысл, поэтому местами я дополнял перевод своим текстом. Итак, поехали.

На форумах часто задают вопросы по поводу топливной коррекции и у меня даже есть некоторое количество электронных писем с просьбами осветить этот вопрос. Многие отмечают топливную коррекцию PIDS (идентификаторы параметра) на показаниях в реальном времени (datastream) своих сканирующих устройств и интересуются для чего она.

Итак, что такое топливные коррекции и что они делают ? Надеюсь мы сможем прояснить все недопонимания. Правильное понимание топливных коррекций может привести к ускорению диагностики и предупредить вас о будущих проблемах с вашим автомобилем.

В основе своей топливные коррекции – процент изменения в топливоподаче во(по) времени. Для того, чтобы двигатель работал хорошо соотношение воздух/топливо должно оставаться в границах небольшого окна 14.7/1. Такое соотношение должно сохраняться в этой зоне под воздействием всех изменяющихся условий с которыми двигатель сталкивается каждый день: холодный пуск (хотя по мне на холодном пуске явно не 14.7/1, но это оставим на совести автора), холостой ход в условиях длительных движений в пробках при движении по трассе и т.д.

Итак, компьютер двигателя пытается сохранить правильное соотношение воздух/топливо посредством точной настройки количества топлива поступающего в двигатель. В то время, как добавляется или уменьшается подача топлива, кислородный датчик следит за тем сколько кислорода в выхлопе и сообщает об этом ЭБУ. Кислородные датчики могут быть представлены как глаза ЭБУ, которые следят за смесью кислорода в выхлопе. ЭБУ следит за этими входными данными от горячих кислородных датчиков безостоновочно в замкнутом цикле. Если кислородный датчик информирует ЭБУ, что выхлопная смесь бедная, ЭБУ добавляет топливо путем увеличения времени открытия форсунки, для компенсации. И наоборот, если датчик кислорода информирует ЭБУ о том, что выхлопная смесь богатая, ЭБУ уменьшает время открытия форсунок, уменьшая тем самым подачу топлива для уменьшения обогащения смеси.

Эти изменения – добавление или уменьшение подачи топлива – называются Топливной Коррекцией или Fuel Trim. На самом деле, хоть датчики и называются кислородными, показывают они состояние топливной смеси. Изменения в напряжении кислородного датчика вызывают прямые изменения топливной смеси. Кратковременная топливная коррекция (STFT) относится к мгновенным изменениям топливной смеси – несколько раз в секунду. Долгосрочная топливная коррекция (LTFT) показывает изменения топливной смеси за длительный промежуток времени на основе показаний кратковременной коррекции (среднее значение за длительное время). Отрицательная топливная коррекция (отрицательные значения по сканеру) свидетельствует об обеднении смеси, а положительная топливная коррекция об обогащении соответственно. (Т.е. если лямбда постоянно видит бедную смесь, то она постоянно обогащает и это отразится на LTFT плюсовыми значениями).

Представим себе такую ситуацию – вы едете от пляжа, который на уровне моря в горы. За короткие промежутки времени вы можете несколько раз подниматься и опускаться вверх-вниз по холмам. Однако на длительном промежутке времени вы на самом деле плавно поднимаетесь от самой низкой точки горы до ее вершины, т.е. едете постоянно вверх, несмотря на временные перепады. Так можно представить себе краткосрочную и долгосрочную коррекции. STFT – кратковременные подъемы и опускания, а LTFT – то, что происходит за длительный промежуток времени в итоге.



Нормальная кратковременная коррекция



Обедненная смесь. Идет ее обогащение системой машины.

Краткосрочная топливная коррекция STFT начнет немедленно увеличиваться, чтобы показать, что компьютер добавляет топливо. Когда компьютер добавляет топливо, это становится заметно кислородному датчику и он следит таким образом до тех пор, пока кислородный датчик не покажет, что смесь больше не бедна и правильное соотношение топливо/воздух достигнуто. ЭБУ будет поддерживать повышенное добавление топлива до тех пор, пока подсос воздуха не будет устранен. Диагностический прибор при этом будет показывать положительные двузначные значения STFT, что будет свидетельствовать о том, что ЭБУ добавляет слишком много топлива для нормальной работы двигателя. Через некоторое время LTFT будет также показывать это увеличение как долгосрочное (постоянное на долгом промежутке времени). А если подсос воздуха слишком большой, то компьютер не сможет добавить достаточно много топлива, чтобы сбалансировать смесь и достичь правильного соотношения воздух/топливо. Корректировка достигнет своего максимального значения, обычно это 25%. Затем выскочит код ошибки, говорящий о том, что двигатель работает на слишком обедненной смеси (ошибка P0171 или P0174) и максимальный порог возможной кратковременной коррекции STFT уже превышен. И обратная ситуация будет, если двигатель будет работать на сверхобогащенной смеси из-за утечки топлива (например льют форсунки), появятся ошибки P0172 или P0175.



Обогащенная смесь. Идет ее обеднение мозгами машины.

Если вы будете ориентироваться на коды, возникающие в результате таких ложных состояний смеси и не сопоставите это все со всеми данными по кислородным датчикам (и от себя добавлю – обязательно смотрите на внешний вид налета на электродах свечей), то вы можете поставить неверный диагноз.

Также, на V-образных моторах на каждом выпускном тракте каждой из голов обычно стоит свой кислородный датчик и идет своя топливная коррекция для каждой головы (показания по Bank 1 и Bank 2). Если у вас 4х-цилиндровый двигатель, то у вас всего один банк данных – Банк 1. На V-образных моторах в этом смысле поудобнее по причине того, что если лямбда с одной стороны неисправна и врет вы можете сузить круг потенциальных причин проблемы ориентируясь на показания второго банка данных – Bank 2.


Думаю здесь надо начать разговор о качестве смеси, какая она должна быть, что её регулирует, ну и кто все же отслеживает и зажигает нам неисправность, в тяжелых случаях даже не дает ехать в связи с потерей мощности ДВС.

Дак кто же отслеживает нашу неисправность, кто этот гуру который знает, что происходит у нас в камере сгорания? А контролером тут выступает лямбда зонд, наш датчик кислорода находящийся до катализатора постоянно регулирует топливо подачу при помощи внесенной в блок управления (ECM) программы.
Когда же считать наш автомобиль неисправным, когда корректировка выросла выше 10% или только после того как загорелся чек? Тут объяснение простое чек загорится когда у коррекции кончится предел, а загорается он, не потому что блок управления хочет спасти ваш ДВС а только из экологических соображений, вы батенька загрязняете экологическую среду. Поэтому действия по устранению неисправности можно начинать до появления CHECK, если ваши коррекции убежали за 8% -приступайте. Почти во всех случаях можно добиться идеального результата плюс-минус 1-2%

Пора приступать к ремонтам. Во первых необходимо обратить внимание на сопутствующие ошибки, если это например: клапан регулировки фаз, неверное соотношение валов, пропуски зажигания, лямбда зонды (на тот который после катализатора можно не обращать внимания он отслеживает только работу катализатора, но надо быть уверенным, что пропускание выхлопа каталитический нейтрализатор не затруднено), некорректные показания датчика температуры охлаждающей жидкости и пр. — устраняем сперва их.

Как Выполнять ремонты по устранению: у некоторых пунктов я указал какие действия необходимо провести, остались нераскрытыми подсос воздуха во впуск, и выход из строя MAF или MAP. Работу обоих датчиков можно проверить, как при помощи диагностики сравнив данные на холостом ходу с данными в программе по ремонту производителя, или при помощи вольтметра на просторах сети легко найти данные рабочего датчика на все модели, ну и проверить датчик температуры работающим в паре с этими датчиками, таблиц в сети так же навалом.

Ну про подсос воздуха напишу подробно, как найти, т.к. процедура поиска у всех производителей одинаковая.
Искать на слух практически бесполезно, тем более на современных авто шлангов и патрубков подключенных к впускному коллектору навалом. Поиск проще всего производить промышленным или автомобильным дымо-генератором,


Очень просто, присоединяем на любой штуцер впускного коллектора, на впуск сняв патрубок с воздушного фильтра ставим заглушку (можно использовать несколько целлофановых пакета натянув их на патрубок и с хомутом обратно одеть на корпус фильтра), дуем отверстие обязательно себя проявит, если оно очень маленькое, наполняем коллектор дымом далее снимаем устроиство и давим сжатым во духом 2 бар будет достаточно. При отсутствии дымо-генератора модно его изготовить, в сети умельцев много — электронная сигарета и пр. Признаюсь у меня на работе тоже самодельный, сделал сам, а работаю я на оф. дилере — смешно)).
При отсуцтвии дымо-генератора, нам понадобится распылитель и немного бензина. Я на работе использую очиститель тормозов так называемый Брэйк клинер — он более летучий, не оставляет следов и запаха, горит злее.



На заведенной машине аккуратно поливаем впускной коолектор из спрея, проходим все прилегающие шланги, когда наша смесь проидет возле отверстия обороты двигателя самопроизвольно возрастут, где это происходит там и отверстие, чем дальше от гбц тем дольше будет пауза перед поднятием оборотов, например если пробит интеркуллер и поливать в его районе задержка примерно 2-4 секунды. Опять же если отверстие очень мало можно усилить эффект всасывания попросив кого нибудь подержать обороты ДВС повыше, держать их ровно педалью акселератора. Так например на днях я искал подсос воздуха на HUMMER2 не применяя дымо-генератор, машина после установки газового оборудования в шараш сервисе видимо, почти сразу после инсталяции стала хандрить, в коллектор внедряли форсунки вставлены убого на клей, но герметично.


Нашел, обороты моментально подскакивали когда проходил спреем вдоль прилегания коллектора к одной из ГБЦ, мною были заказаны новые прокладки, шли 2 недели, но после разбора оказалось что дело не в прокладках.



Отчаянные газовщики, не знаю зачем, может задрали плоскость или ещё че там их побудило, в общем убили плоскость прилегания, толи рашпилем они шлифовали, толи об асфальт, стену в падике. В общем бывает и такое, коллектор решили заменить.





Но факт остался фактом, минимальный подсос был найден при помощи простого спрея, а был он именно по рискам от чьих то стараний, так как отклонение в плоскости прокладка с резиновой вставкой способна предотвратить. LONG был +15%.
Все проверки описанные выше должны входить в диагностику, кроме тех которые требуют разбора (снятие бака, насоса, форсунок и пр). Не платите за дианостику, если вам сказали код ошибки но не сказали причину, это была не диагнотика а чтение кодов, а читистов развелось массы, читают что делать не знают, за чтение 300р. не более.
Ну все, я заканчиваю, ставте лайки, берегите своих коней.

Читайте также: