Лямбда функция n го порядка

Добавил пользователь Алексей Ф.
Обновлено: 19.09.2024

Начнём мы с традиционного (но краткого) экскурса в историю. В 30-х годах прошлого века перед математиками встала так называемая проблема разрешения (Entscheidungsproblem), сформулированная Давидом Гильбертом. Суть её в том, что вот есть у нас некий формальный язык, на котором можно написать какое-либо утверждение. Существует ли алгоритм, за конечное число шагов определяющий его истинность или ложность? Ответ был найден двумя великими учёными того времени Алонзо Чёрчем и Аланом Тьюрингом. Они показали (первый — с помощью изобретённого им λ-исчисления, а второй — теории машины Тьюринга), что для арифметики такого алгоритма не существует в принципе, т.е. Entscheidungsproblem в общем случае неразрешима.

Так лямбда-исчисление впервые громко заявило о себе, но ещё пару десятков лет продолжало быть достоянием математической логики. Пока в середине 60-х Питер Ландин не отметил, что сложный язык программирования проще изучать, сформулировав его ядро в виде небольшого базового исчисления, выражающего самые существенные механизмы языка и дополненного набором удобных производных форм, поведение которых можно выразить путем перевода на язык базового исчисления. В качестве такой основы Ландин использовал лямбда-исчисление Чёрча. И всё заверте…

λ-исчисление: основные понятия

Синтаксис

В основе лямбда-исчисления лежит понятие, известное ныне каждому программисту, — анонимная функция. В нём нет встроенных констант, элементарных операторов, чисел, арифметических операций, условных выражений, циклов и т. п. — только функции, только хардкор. Потому что лямбда-исчисление — это не язык программирования, а формальный аппарат, способный определить в своих терминах любую языковую конструкцию или алгоритм. В этом смысле оно созвучно машине Тьюринга, только соответствует функциональной парадигме, а не императивной.

Мы с вами рассмотрим его наиболее простую форму: чистое нетипизированное лямбда-исчисление, и вот что конкретно будет в нашем распоряжении.

Термы:

переменная: x
лямбда-абстракция (анонимная функция): λx.t , где x — аргумент функции, t — её тело.
применение функции (аппликация): f x , где f — функция, x — подставляемое в неё значение аргумента

  • Применение функции левоассоциативно. Т.е. s t u — это тоже самое, что (s t) u
  • Аппликация (применение или вызов функции по отношению к заданному значению) забирает себе всё, до чего дотянется. Т.е. λx. λy. x y x означает то же самое, что λx. (λy. ((x y) x))
  • Скобки явно указывают группировку действий.

Процесс вычисления

Рассмотрим следующий терм-применение:

Существует несколько стратегий выбора редекса для очередного шага вычисления. Рассматривать их мы будем на примере следующего терма:

который для простоты можно переписать как

(напомним, что id — это функция тождества вида λx.x )


В этом терме содержится три редекса:

Недостатком стратегии вызова по значению является то, что она может зациклиться и не найти существующее нормальное значение терма. Рассмотрим для примера выражение

(λx.λy. x) z ((λx.x x)(λx.x x))

Ещё одна тонкость связана с именованием переменных. Например, терм (λx.λy.x)y после подстановки вычислится в λy.y . Т.е. из-за совпадения имён переменных мы получим функцию тождества там, где её изначально не предполагалось. Действительно, назови мы локальную переменную не y , а z — первоначальный терм имел бы вид (λx.λz.x)y и после редукции выглядел бы как λz.y . Для исключения неоднозначностей такого рода надо чётко отслеживать, чтобы все свободные переменные из начального терма после подстановки оставались свободными. С этой целью используют α-конверсию — переименование переменной в абстракции с целью исключения конфликтов имён.

Так же бывает, что у нас есть абстракция λx.t x , причём x свободных вхождений в тело t не имеет. В этом случае данное выражение будет эквивалентно просто t . Такое преобразование называется η-конверсией.

На этом закончим вводную в лямбда-исчисление. В следующей статье мы займёмся тем, ради чего всё и затевалось: программированием на λ-исчислении.

Формула описывающая нормированную ДН зеркальной антенны. Результаты расчета в табл. 6., для нормированного логарифмического значения в табл.7.

Рис. 9. График нормированной ДН зеркальной антенны в декартовой системе координат

Рис. 10. График нормированной логарифмической ДН зеркальной антенны в декартовой системе координат

По графикам ДН найдем ширину главного лепестка и уровень боковых лепестков первого порядка. Ширина главного лепестка ДН антенны по уровню 0,707 по напряженности.

Уровень боковых лепестков первого порядка в относительных единицах

Используя данные в литературе [1, табл. 5.1], оценим величину коэффициента использования поверхности раскрыва.

Т.е. больше заданного условием.

Оценим КНД рассчитанной антенны

Значение КНД полученное по результатам расчета в данной работе превышает значение полученные при начальном расчете в п.2 данной курсовой работы

2.7. Расчет допуска на точность изготовления

Наибольшее отклонение от идеальной (расчетной) формы рефлектора в центре раскрыва

Наибольшее отклонение от идеальной (расчетной) формы рефлектора на краю раскрыва

Заключение

В ходе выполнения курсовой работы был произведен расчет зеркальной антенны и рупорного облучателя. Результаты удовлетворяют и в некоторой степени превосходят поставленное техническое задание. Соответственно избыточность (запас), который мы получили при расчете, может быть реализован для понижения себестоимости изделия при производстве. Итогом проектирования является сборочный чертеж рупорного облучателя, а также схема его установки с элементами крепления для на зеркальной антенне, учтена возможность точного позиционирования облучателя.

30.03.2012 _______________ Демьянов В.А.

Список используемой литературы

1. Кочержевский Г.Н. Антенно–фидерные устройства. Москва: Радио и связь, 1989г.-352с.

2. Уколова Г.Г. Антенно-фидерные устройства: Метод. указания.- Владивосток, 2004. – 24с.

3. Чернышев В.П. Распространение радиоволн и антенно–фидерные устройства. Москва: Радио и связь, 1982г.

image

Я решил написать эту серию статей, ибо считаю, что никто не должен сталкиваться с той стеной непонимания, с которой столкнулся когда-то я.

Ведь большинство статей написаны таки образом что, для того чтобы понять что-то в Функциональном Программировании (далее ФП), тебе надо уже знать многое в ФП. Эту статью я старался написать максимально просто — настолько понятно, чтобы её суть мог уловить мой племянник, школьник, который сейчас делает свои первые шаги в Python.

Небольшое введение

  • Чистая Функция
  • Функции высшего порядка

Чистая Функция — Функция которая является детерминированной и не обладает никакими побочными эффектами.

То есть чтобы функция являлась чистой она должна быть детерминированной — то есть каждый раз при одинаковом наборе аргументов выдавать одинаковый результат.

Пример детерминированной функции


И пример не детерминированной:


Каждый раз при смене дня недели (который не является аргументом функции) функция выдает разные результаты.

Самый очевидный пример не детерминированной функции это random:


Второе важное качество чистой функции это отсутствие побочных эффектов.


Функция sort_by_sort имеет побочные эффекты потому что изменяет исходный список элементов и выводит что то в консоль.


В отличии от предыдущего примера функция sort_by_sorted не меняет исходного массива и возвращает результат не выводя его в консоль самостоятельно.

Чистые функции хороши тем что:

  • Они проще читаются
  • Они проще поддерживаются
  • Они проще тестируются
  • Они не зависят от того в каком порядке их вызывать

Функции высшего порядка — в программировании функция, принимающая в качестве аргументов другие функции или возвращающая другую функцию в качестве результата.


С основами чуть чуть разобрались и теперь перейдем к следующему шагу.

Итак, начнем

Для начала надо понять следующее — что такое Функциональное Программирование вообще. Лично я знаю две самые часто упоминаемые парадигмы в повседневном программировании — это ООП и ФП.

Если упрощать совсем и объяснять на пальцах, то описать эти две парадигмы можно следующим образом:

  • ООП — это Объектно Ориентированное Программирование — подход к программированию, при использовании которого объекты можно передавать в качестве параметров и использовать их в качестве значений.
  • По такой логике можно установить, что ФП — подход к программированию, при использовании которого функции можно передавать другим функциям в качестве параметров и использовать функции в качестве значений, возвращаемых другими функциями… Ответ скрыт в самом названии.

Это относится и к ФП — взял какие-то данные, взял какую-то функцию, поигрался с ними и выдал что-то на выходе.

Не стану расписывать всё, иначе это будет оооочень долго. Цель данной статьи — помочь разобраться, а не объяснить, как и что работает, поэтому тут мы рассмотрим основные функции из ФП.

В большинстве своем ФП (как я его воспринимаю) — это просто упрощенное написание кода. Любой код, написанный в функциональном стиле, может быть довольно легко переписан в обычном стиле без потери качества, но более примитивно. Цель ФП заключается в том, чтобы писать код более простой, понятный и который легче поддерживать, а также который занимает меньше памяти, ну и куда же без этого — разумеется, главная вечная мораль программирования — DRY (Don’t Repeat Yourself — Не повторяйся).

Сейчас мы с вами разберем одну из основных функций, которая применяется в ФП — Lambda функцию.

В следующих статьях мы разберем такие функции как Map, Zip, Filter и Reduce.

Lambda функция

Lambda — это инструмент в python и других языках программирования для вызова анонимных функций. Многим это скорее всего ничего не скажет и никак не прояснит того, как она работает, поэтому я расскажу вам просто механизм работы lambda выражений.

Все очень просто.

Рассмотрим пример. Например, нам надо написать функцию которая бы считала площадь круга при известном радиусе.

Формула площади круга это

где
S — это площадь круга
pi — математическая константа равная 3.14 которую мы получим из стандартной библиотеки Math
r — радиус круга — единственная переменная которую мы будем передавать нашей функции

Круг с радиусом

Теперь оформим это все в python:


Вроде бы неплохо, но это всё может выглядеть куда круче, если записывать это через lambda:


Чтобы было понятнее, анонимный вызов функции подразумевает то, что вы используете её, нигде не объявляя, как в примере выше.

Лямбда функция работает по следующему принципу

Рассмотрим пример с двумя входными аргументами. Например, нам надо посчитать объем конуса по следующей формуле:


Конус с габаритами

Запишем это все в python:


А теперь как это будет выглядеть в lambda форме:


Количество переменных здесь никак не ограничено. Для примера посчитаем объем усеченного конуса, где у нас учитываются 3 разные переменные.

Объем усеченного конуса считается по формуле:


И вот, как это будет выглядеть в python классически:


А теперь покажем, как это будет выглядеть с lambda:


После того, как мы разобрались, как работает lambda функция, давайте разберем ещё кое-что интересное, что можно делать с помощью lambda функции, что может оказаться для вас весьма неожиданным — Сортировку.

Сортировать одномерные списки в python с помощью lambda довольно глупо — это будет выглядеть, как бряцание мускулами там, где оно совсем не нужно.

Ну серьезно допустим, у нас есть обычный список (не важно состоящий из строк или чисел) и нам надо его отсортировать — тут же проще всего использовать встроенную функцию sorted(). И в правду, давайте посмотрим на это.


В таких ситуациях, действительно, хватает обычного sorted() (ну или sort(), если вам нужно изменить текущий список на месте без создания нового, изменив исходный).

Но что, если нужно отсортировать список словарей по разным ключам? Тут может быть запись как в классическом стиле, так и в функциональном. Допустим, у нас есть список книг вселенной Песни Льда и Пламени с датами их публикаций и количеством страниц в них.

Как всегда, начнем с классической записи.


А теперь перепишем это все через lambda функцию:


Таким образом, lambda функция хорошо подходит для сортировки многомерных списков по разным параметрам.

Если вы повторите весь этот код самостоятельно, написав его сами, то я уверен, что с этого момента вы сможете сказать, что отныне вы понимаете, как работают lambda выражения, и сможете применять их в работе.

Но где же тут та самая экономия места, времени и памяти? Экономится максимум пара строк.

image

Конечно многие из нас знакомы с этим понятием, однако данная статья рассчитана на новичков. В данном посте постараюсь рассмотреть данный феномен и привести примеры использования. Для начала необходимо понять что же такое лямбда-функция. Итак, лямбда-функция, часто ее называют анонимной, т. е. функция при определении которой не нужно указывать ее имя. Возвращаемое значение такой функцией присваивается переменной, через которую в последствие эту функцию можно вызывать.
До выхода PHP 5.3 определять лямбда-функции было возможно, но их нельзя было назвать полноценными. Сейчас я приведу пару примеров и продолжим рассматривать данные понятия.

Конечно динамическое создание функций не решает всех проблем, однако порой написание такой одноразовой функции может быть полезным. Можно расширить наш пример:

Понятие замыкания наверняка знакомо программистам на JavaScript, а так же программистам на многих других языках. Замыкание — это функция, охватывающая или замыкающая текущую область видимости. Что бы понять все это, рассмотрим пример:

Как вы уже могли заметить, функция не имеет имени и результат присваивается переменной. Лямбда-функция, созданная таким образом, возвращает значение в виде объекта типа closure.
В PHP 5.3 стало возможно вызывать объекты как если бы они были функциями. А именно магический метод __invoke() вызывается каждый раз, когда класс вызывается как функция.
Переменные недоступны внутри функции, если они не объявлены глобальными, так же переменные из дочернего контекста недоступны если только не используется зарезервированное слово use. Обычно в PHP переменные передаются в замыкание значением, это поведение можно изменить с помощью ампермсанда перед переменной в выражении use. Рассмотрим пример:

Если убрать амперсанды то оба раза выведется 80, т. к. переменная $mul внутри замыкания будет копией, а не ссылкой.
Итак, осталось только выяснить как это можно применить на практике.
Рассмотрим пример:

Этот пример уже можно использовать для достаточно гибкого прототипирования. Достаточно объявить методы для всех SQL-операций с объектом.
Автор не призывает всех придерживаться такой практики, равно как и не считает что так лучше, все вышеописанное лишь пример использования, причем возможно не самый техничный и интересный, и не более того.
UPD Говоря о том самом длинном регулярном выражении, я не стал подписывать его в комментариях и решил вынести сюда. Оно лишь ищет строки в одинарных и двойных кавычках, а так же имена таблиц и экранирует их.

В C++ 11 и более поздних версиях лямбда-выражение, часто называемое лямбда– — это удобный способ определения объекта анонимной функции ( замыкания) непосредственно в расположении, где оно вызывается или передается в качестве аргумента функции. Обычно лямбда-выражения используются для инкапсуляции нескольких строк кода, передаваемых алгоритмам или асинхронным функциям. В этой статье определяются лямбда-выражения и их сравнение с другими методами программирования. Он описывает их преимущества и предоставляет некоторые основные примеры.

Похожие статьи

Части лямбда-выражения

В стандарте ISO C++ демонстрируется простое лямбда-выражение, передаваемое функции std::sort() в качестве третьего аргумента:

На следующем рисунке показана структура лямбда-выражения:

An illustration of the structural elements of a lambda expression.

предложение Capture (также известное как оператор лямбда-выражения в спецификации C++).

список параметров Используемых. (Также называется лямбда-объявлением)

изменяемая спецификация Используемых.

Спецификация Exception Используемых.

замыкающий-возвращаемый тип Используемых.

Предложение Capture

Лямбда-выражение может добавлять новые переменные в тексте (в C++ 14), а также получать доступ к переменным из окружающей области или записыватьих. Лямбда-выражение начинается с предложения Capture. Он указывает, какие переменные фиксируются, а также указывает, является ли запись по значению или по ссылке. Доступ к переменным с префиксом амперсанда ( & ) осуществляется по ссылке и к переменным, к которым нет доступа по значению.

Пустое предложение фиксации ( [ ] ) показывает, что тело лямбда-выражения не осуществляет доступ к переменным во внешней области видимости.

Можно использовать режим захвата по умолчанию, чтобы указать, как фиксировать все внешние переменные, упоминаемые в теле лямбда-выражения: [&] означает, что все переменные, на которые вы ссылаетесь, захватываются по ссылке, а [=] значит, они записываются по значению. Можно сначала использовать режим фиксации по умолчанию, а затем применить для определенных переменных другой режим. Например, если тело лямбда-выражения осуществляет доступ к внешней переменной total по ссылке, а к внешней переменной factor по значению, следующие предложения фиксации эквивалентны:

При использовании записи по умолчанию фиксируются только те переменные, которые упоминаются в теле лямбда-выражения.

Если предложение Capture включает запись-Default & , то ни один идентификатор в записи этого предложения записи не может иметь форму &identifier . Аналогично, если предложение Capture включает запись по умолчанию = , то ни один из этих предложений не может иметь форму =identifier . Идентификатор или this не может использоваться в предложении Capture более одного раза. В следующем фрагменте кода показаны некоторые примеры.

Захват, за которым следует многоточие, — это расширение пакета, как показано в следующем примере шаблона Variadic :

Чтобы использовать лямбда-выражения в теле функции члена класса, передайте this указатель в предложение Capture, чтобы предоставить доступ к функциям и членам данных включающего класса.

Visual Studio 2017 версии 15,3 и более поздних версий (доступно в /std:c++17 режиме и более поздних версиях): this указатель может быть записан по значению путем указания *this в предложении capture. Захват по значению копирует весь замыкание на каждый узел вызова, где вызывается лямбда-выражение. (Замыканием является объект анонимной функции, инкапсулирующий лямбда-выражение.) Захват по значению полезен, когда лямбда выполняется в параллельных или асинхронных операциях. Это особенно полезно на некоторых аппаратных архитектурах, таких как NUMA.

Пример, демонстрирующий использование лямбда-выражений с функциями членов класса, см. в разделе "пример: использование лямбда-выражения в методе" в примерах лямбда-выражений.

При использовании предложения Capture рекомендуется учитывать такие моменты, особенно при использовании лямбда-выражений с многопоточностью:

Захваты ссылок можно использовать для изменения переменных вне, но захваты значений не могут. ( mutable позволяет изменять копии, но не оригиналы.)

Захват ссылок отражает обновления переменных вне, но не фиксирует значения.

Фиксация ссылки вводит зависимость от времени существования, тогда как фиксация значения не обладает зависимостями от времени существования. Это особенно важно при асинхронном выполнении лямбда-выражения. Если вы захватываете локальную по ссылке в асинхронном лямбда-выражении, это локально может быть легко пропала в момент выполнения лямбда-выражения. Код может вызвать нарушение прав доступа во время выполнения.

Обобщенная фиксация (C++14)

В C++14 вы можете объявлять и инициализировать новые переменные в предложении фиксации. Для этого не требуется, чтобы эти переменные существовали во внешней области видимости лямбда-функции. Инициализация может быть выражена в качестве любого произвольного выражения. Тип новой переменной определяется типом, который создается выражением. Эта функция позволяет собирать переменные только для перемещения (например, std::unique_ptr ) из окружающей области и использовать их в лямбда-выражении.

Список параметров

Лямбда-выражения могут записывать переменные и принимать входные параметры. Список параметров (лямбда-декларатор в стандартном синтаксисе) является необязательным и в большинстве аспектов напоминает список параметров для функции.

В C++ 14, если тип параметра является универсальным, можно использовать auto ключевое слово в качестве спецификатора типа. Это ключевое слово указывает компилятору создать оператор вызова функции в качестве шаблона. Каждый экземпляр auto в списке параметров эквивалентен отдельному параметру типа.

Поскольку список параметров является необязательным, можно опустить пустые скобки, если аргументы не передаются в лямбда-выражение и его лямбда-декларатор не содержит спецификацию Exception, завершающего-Return-Typeили mutable .

Изменяемая спецификация

Как правило, оператор вызова функции лямбда-выражения является константой по значению, но использование mutable ключевого слова отменяет это. Он не создает изменяемых элементов данных. mutable Спецификация позволяет тексту лямбда-выражения изменять переменные, захваченные по значению. В некоторых примерах, приведенных далее в этой статье, показано, как использовать mutable .

Спецификация исключений

Можно использовать noexcept спецификацию исключения, чтобы указать, что лямбда-выражение не создает никаких исключений. Как и в случае с обычными функциями, компилятор Microsoft C++ создает предупреждение C4297 , если лямбда-выражение объявляет noexcept спецификацию исключения, а тело лямбда-выражения создает исключение, как показано ниже:

Дополнительные сведения см. в разделе спецификации исключений (throw).

Возвращаемый тип

Возвращаемый тип лямбда-выражения выводится автоматически. Не обязательно использовать ключевое слово, auto если не указан завершающий возвращаемый тип. Замыкающий возвращаемый тип напоминает часть функции, возвращающей возвращаемый тип, и функцию-член. Однако тип возвращаемого значения следует списку параметров, и необходимо включить ключевое слово -> элемента trailing-return-type перед типом возвращаемого значения.

Можно опустить часть возвращаемого типа лямбда-выражения, если тело лямбды содержит только один оператор return. Или, если выражение не возвращает значение. Если тело лямбда-выражения содержит один оператор return, компилятор выводит тип возвращаемого значения из типа возвращаемого выражения. В противном случае компилятор выводит тип возвращаемого значения как void . Рассмотрим следующие примеры фрагментов кода, иллюстрирующих этот принцип:

Лямбда-выражение может создавать другое лямбда-выражение в качестве своего возвращаемого значения. Дополнительные сведения см. в разделе "лямбда-выражения более высокого порядка" в примерах лямбда-выражений.

Тело лямбды

Тело лямбда-выражения является составным оператором. Он может содержать все, что разрешено в теле обычной функции или функции-члена. Тело обычной функции и лямбда-выражения может осуществлять доступ к следующим типам переменных:

Фиксированные переменные из внешней области видимости (см. выше).

Локально объявленные переменные.

Члены данных класса, объявленные внутри класса и this захваченные.

Любая переменная, имеющая статическую длительность хранения, например глобальные переменные.

В следующем примере содержится лямбда-выражение, которое явно фиксирует переменную n по значению и неявно фиксирует переменную m по ссылке.

Поскольку переменная n фиксируется по значению, ее значение после вызова лямбда-выражения остается равным 0 . mutable Спецификацию n можно изменить в лямбда-выражении.

Лямбда-выражение может записывать только переменные с автоматическим длительностью хранения. Однако можно использовать переменные со статической длительностью хранения в теле лямбда-выражения. В следующем примере функция generate и лямбда-выражение используются для присвоения значения каждому элементу объекта vector . Лямбда-выражение изменяет статическую переменную для получения значения следующего элемента.

Дополнительные сведения см. в разделе Generate.

В следующем примере кода используется функция из предыдущего примера и добавляется пример лямбда-выражения, использующего алгоритм generate_n стандартной библиотеки C++. Это лямбда-выражение назначает элемент объекта vector сумме предыдущих двух элементов. mutable Ключевое слово используется, чтобы тело лямбда-выражения может изменить свои копии внешних переменных x и y , которое захватывает лямбда-выражение по значению. Поскольку лямбда-выражение захватывает исходные переменные x и y по значению, их значения остаются равными 1 после выполнения лямбда-выражения.

Дополнительные сведения см. в разделе generate_n.

constexpr лямбда-выражения

Visual Studio 2017 версии 15,3 и более поздних версий (доступно в /std:c++17 режиме и более поздних версиях): лямбда-выражение можно объявить как constexpr (или использовать его в константном выражении), если инициализация каждого захваченного или введенного элемента данных разрешена в константном выражении.

Лямбда-выражение неявно constexpr , если его результат удовлетворяет требованиям constexpr функции:

Если лямбда-выражение неявно или неявное constexpr , то преобразование в указатель функции создает constexpr функцию:

Специально для систем Майкрософт

Лямбда-выражения не поддерживаются в следующих управляемых сущностях среды CLR: ref class , ref struct , value class или value struct .

Если вы используете модификатор, зависящий от Майкрософт, например __declspec , его можно вставить в лямбда-выражение сразу после parameter-declaration-clause . Например:

Чтобы определить, поддерживается ли определенный модификатор лямбда-выражениями, см. статью об модификаторе в разделе модификаторы, относящиеся к Microsoft .

Visual Studio поддерживает стандартную лямбда-функцию c++ 11 и лямбда-выражения без отслеживания состояния. Лямбда без отслеживания состояния преобразуется в указатель функции, который использует произвольное соглашение о вызовах.

Читайте также: