Контроль работы двигателя ваз 2114

Добавил пользователь Skiper
Обновлено: 20.09.2024


Ну вот я и допилил наконец- то сигналку под себя, попутно сделал автозапуск.
Ковырялся опять во дворе. (Все наверно ходили и думали… вот дурак купил теперь ремонтирует и тд и тп… — Но мне как-то пох =) )
В первый день разобрался с проводами от сигналки некоторые получше проложил, ковырялся до темна (светодиодный фонарь 7W RuleZZZ )
Результат первого дня машина завелась, в тестовом режиме так сказать
— прокрутка стартера 0,8сек
— контроль работы двигателя по напряжению
Доволен но не совсем =) (как обычно). Надо сделать по сигналу тахометра!
Взял тестер меряю напряжение на 2 проводе белой колодки:
Зажигание выкл — 0
зажигание вкл — +12в должно быть (0в)
завел двигатель — 4,03-4,5в
газую — стоит около 4,3в там по идее импульсы должны менять свою длительность, но осциллографа под рукой нет. Пошел вечером домой курить инет.
Выход такой повесить конденсатор не полярный на 1мкф (0,1мкф или 2мкф) чтобы убрать постоянную составляющую (уровень +12в). (Должен быть ноль на входе провода контроля работы двигателя, а при работе двигателя импульсы … будет !)
На следующий день еще покурив инет, позвонив в техподдержку сигналки, пошел доделывать=)
Запрограмировал сигналку на контроль работы по тахосигналу и понеслась =)
Руки же чешутся, припоял все как надо, завел работает стартер не перекручивает (отлично). А что будет если отключить провод контроля? Пробую — заглохла, тут же сама предпринимает попытку старта, провод отключен, завелась работает примерно 1сек и глохнет. (значит понимает сигнал с провода через разделительную емкость (1мкф)). Запаял уже капитально убрав в термоусадку.
Да и напоследок при режиме контроля по тахометру самый правильный вариант
Максимальное время прокрутки стартера 3,6сек при этом как только появляются импульсы машина откидывает стартер. (возможные по напряжению, по генератору +, по генератору -). Кстати народ еще колхозит контроль на лампочку давления масла =) Но МЫ не ищем легких путей!
Кстати перекрутить стартер так и не получилось даже с ключа держа его в положении стартер, видимо в машине придумали схему для защиты от "Русский дуракЪ" =)
У двух коллег на работе X-trail вот у одного стоял контроль по генератору, машина не заводилась (т.е. лампочка зарядки уже погасла а машина еще не завелась до конца), перепрограммировал он на напряжение длительность прокрутки была около 1,4сек, результат — стартер перекручивает! У другого с учетом этих случаев установщик сигналки сделал контроль по тахометру и все в ажуре!
Я даже начал подкалывать ино, что на Фиате и Ниссане стартер перекручивает а на Вазе 14той модели НЕТ !

Если есть вопросы — Спрашивайте!
Нужна схема могу начертить, фотки не делал (ну кто не видел снятую панель торпеды? — инет вам в помощь =) )

И для тех кто дочитал до конца вопрос. Как быть с ручником зимой? может кто что посоветует? (про просушку колодок слышал )

workspace 1280538 1920

Параметры

F.A.Q. Типовые параметры работы инжекторных двигателей ВАЗ 2114

Для многих автолюбителей, которым интересна диагностики тема будет полезна информация о типичных двигателей параметрах. Поскольку наиболее распространенные и простые в двигатели ремонте автомобилей ВАЗ, то и начнем именно с что. На них в первую очередь надо обратить при внимание анализе параметров работы двигателя?
1. остановлен Двигатель.
1.1 Датчики температуры охлаждающей жидкости и если (воздуха есть). Проверяется температура на предмет показаний соответствия реальной температуре двигателя и воздуха. лучше Проверку производить с помощью бесконтактного термометра. К сказать слову, одни из самых надежных в системе двигателей впрыска ВАЗ – это датчики температуры.

1.2 дроссельной Положение заслонки (кроме систем с электронной газа педалью). Педаль газа отпущена – 0%, акселератор соответственно – нажали открытию дроссельной заслонки. Поиграли газа педалью, отпустили – должно также остаться 0%, при ацп этом с дпдз около 0, 5В. Если открытия угол прыгает с 0 до 1-2%, то как правило это изношенного признак дпдз. Реже встречается неисправности в датчика проводке. При полностью нажатой педали некоторые газа блоки покажут 100% открытия (как такие январь 5.1, январь 7.2), а другие как Bosch например MP 7.0 покажут только 75%. Это нормально.

2. работает Двигатель на холостом ходу.

2.1 Обороты холостого Обычно. хода это – 800 – 850 об/мин полностью при прогретом двигателе. Значение количества холостом на оборотов ходу зависят от температуры двигателя и программе в задаются управления двигателем.

2.3 Длительность времени Для. впрыска фазированного впрыска типичное значение мсек 3, 3 – 4, 1 составляет. Для одновременного – 2, 1 – 2, 4 мсек. Собственно не важно так само время впрыска, как коррекция его.

2.4 Коэффициент коррекции времени впрыска. множества от Зависит факторов. Это тема для статьи отдельной, здесь только стоит упомянуть, чем что ближе к 1, 000 тем лучше. 000 1, Больше – значит смесь дополнительно обогащается, 000 1, меньше значит обедняется.

2.5 Мультипликативная и аддитивная коррекции составляющая самообучением. Типичное значение мультипликатива 1 +/-0, 2. измеряется Аддитив в процентах и должен быть на исправной более не системе +/- 5%.

2.6 При наличии признака работы зоне в двигателя регулировки по сигналу датчика кислорода должен последний рисовать красивую синусоиду от 0, 1 до 0, 8 В.

рассмотрим Теперь подробнее, как на практике ведут эти себя параметры.

Ваз 2114 8ми двигатель клапанный, блок управления Январь 5.1

Ваз 8ми 2114 клапанный двигатель, блок управления Ваз 7.2

Январь 2114 8ми клапанный двигатель, управления блок Bosch 7.9.7

Ваз 2114 8ми двигатель клапанный, блок управления М73

Ваз 8ми 2114 клапанный двигатель, блок управления заключении

И в М74 напомню, что приведенные выше сняты скриншоты с реальных автомобилей, но к сожалению зафиксированные являются не параметры идеальными. Хотя параметры сняты исправных с только автомобилей.

Диагностические параметры двигателя ваз 2114. Типовые параметры работы инжекторных двигателей ВАЗ

26.05.2021 26 669 Диагностика

Благодаря оснащению отечественных автомобилей бортовыми компьютерами автовладельцам стало проще искать неисправности в работе машин. Для выявления проблемы человеку достаточно провести диагностику, которая покажет коды ошибок. Этот материал позволит узнать, какие могут произойти ошибки ВАЗ 2114 и как с ними бороться.

Коды ошибок и их расшифровка

Способ самодиагностики не требует от водителя наличия сложных приборов или дополнительных агрегатов. Для выполнения процедуры достаточно самого автомобиля.

Стандартная последовательность действий выглядит так.

Если последовательность действий выполнена верно, все индикаторы загорятся, а дисплей выдаст двузначный код неисправности.

Сигналом неисправности может стать отсутствие отклика от индикатора. При этом, необходимо проверить цепь, идущую от прибора.

Самые распространенные коды ошибок панели ВАЗ 2114, встречающиеся в 90% случаев:

Важно знать, что после просмотра коды ошибок ВАЗ 2114/2115 не пропадают самостоятельно после выполнения ремонта. Их требуется принудительно сбросить.

Для выполнения работы потребуется простая последовательность действий:

Это также необходимо проделать, если планируется поездка на СТО. Обнаружив указания бортового компьютера, мастера будут исправлять эти проблемы, что выйдет однозначно дороже.

К минусам самостоятельной процедуры относится малая точность данных. Бортовая диагностика показывает только общий вектор направления, где следует искать неисправность.

Проверка при помощи диагностического оборудования

Выявить коды ошибок ВАЗ 2115 и 2114 можно при помощи ноутбука со специальной программой. Инструмент подключается к тестовой колодке автомобиля через набор переходников. Мастер настраивает ПО, и после диагностики на экране компьютера отобразится одна или несколько неисправностей в виде пятизначного шифра.


Всем известно о надежности и неприхотливости инжекторного двигателя по сравнению с карбюраторными аналогами. В настоящее время автомобилей с карбюраторами становится все меньше и меньше, а выпуск таких автомобилей и вовсе запрещен из-за норм евростандартов.

В данной статье рассказывается о датчиках системы управления двигателем ВАЗ 2114, а именно подробно описан каждый из датчиков, где он расположен и за какую функцию отвечает. Прочитав данную статью, Вы с легкостью научитесь определять вышедшие из строя датчики, а так же будите знать о их местонахождении.

Электронный блок управления двигателем (ЭБУ)


Электронный блок управления двигателем является мозговым центром всего автомобиля. Все датчики установленные в автомобиле связанны именно с данным блоком. Все необходимые расчеты и последствия рассчитываются в ЭБУ. Блок управления двигателем корректирует всю его работу. Расположен в нижней части торпеды ВАЗ 2114 в ногах у переднего пассажира.

Признаки неисправности ЭБУ:

К признакам неисправности ЭБУ можно отнести все ниже приведенные признаки неисправностей датчиков. Ведь каждый датчик передает показания на ЭБУ, а он в свою очередь должен их обработать, но случается, что по каким-то причинам эти процессы в ЭБУ могут не обрабатываться. При таких проблемах ЭБУ необходимо ремонтировать, пропаивать дорожки или менять вышедшие из строя радиодетали.

Датчик массового расхода воздуха (ДМРВ)


ДМРВ расположен в подкапотном пространстве ВАЗ 2114 и является одним из наиболее узнаваемых датчиков автомобиля. Датчик массового расхода воздуха крепится двумя болтами к боксу воздушного фильтра. Отвечает ДМРВ за подсчет всасываемого воздуха двигателем и передает показания на выше упомянутый ЭБУ. ДМРВ напрямую связан с формированием топливовоздушной смеси.

Признаки неисправности ДМРВ:

  • Ухудшение динамики авто;
  • Увеличение расхода топлива;
  • Плавающие обороты на ХХ;
  • При запуске ДВС приходится долго крутить стартером;

Датчик положения коленчатого вала (ДПКВ)


ДПКВ устанавливается вблизи ремня ГРМ, а именно возле шестерни коленчатого вала. Данный датчик отвечает за подсчет оборотов коленчатого вала со шкива ремня генератора. ДПКВ участвует в формировании искры необходимой для воспламенения топливной смеси в камере сгорания. При поломке датчика положения коленчатого вала двигатель автомобиля не запустится.

Признаки неисправности ДПКВ:

  • ДВС авто не запускается;
  • Самопроизвольная остановка ДВС;
  • Неравномерная работа на ХХ и высоких оборотах;

Датчик температуры охлаждающей жидкости (ДТОЖ)


Датчик температуры охлаждающей жидкости установлен в корпусе термостата и служит для включения и отключения вентилятора охлаждения двигателя. Следует отметить, что включение вентилятора является не единственной задачей данного датчика. ДТОЖ осуществляет корректировку топливной смеси для поддержания более высоких оборотов двигателя при прогреве, то есть если ОЖ в автомобиле будет иметь температуру ниже рабочей, датчик будет подавать показания об обогащении топливной смеси для более быстрого прогрева двигателя.

Признаки неисправности ДТОЖ:

  • Не работает вентилятор охлаждения;
  • Нет прогревочных оборотов;
  • Авто плохо запускается;
  • Увеличенный расход топлива;

Датчик положения дроссельной заслонки (ДПДЗ)


ДПДЗ установлен на самом дросселе и представляет собой потенциометр. Датчик переедет показания на ЭБУ о положении заслонке в дросселе. Данный тип датчика имеет ненадежную конструкцию и довольно часто выходит из строя. На более новых моделях ВАЗ 2114 с электронной педалью газа ДПДЗ отсутствует.

Признаки неисправности ДПДЗ:

  • Большие обороты ДВС при прогреве;
  • Скачки оборотов ДВС;
  • Увеличенный расход топлива;
  • Не стабильный ХХ;

Датчик детонации(ДД)


Датчик детонации устанавливается на блоке цилиндров между 2 и 3 цилиндром. Функции датчика заключаются в улавливании детонации при работе двигателя и передаче полученных сигналов на ЭБУ. Датчик выполнен на принципе пьеза элемента и имеет простейшую конструкцию.

Признаки неисправности ДД:

  • Высокий расход топлива;
  • Вибрации при работе ДВС;
  • Рывки при движении;

Датчик давления масла (ДДМ)


Датчик давления масла расположен вблизи масло заливной горловины. Служит датчик для сигнализации водителю о снижении давления масла в двигателе. При снижении давления он подает сигнал на панель приборов и зажигает сигнальную лампу о низком давлении масла.

Признаки неисправности ДДМ:

  • Постоянное зажжение лампы давления масла;
  • Протечка масла со стыка в датчике;

Регулятор холостого хода (РХХ)


РХХ устанавливается на дроссельном узле автомобиля и служит для регулировки оборотов холостого хода посредствам открытия и закрытия воздушных каналов. Данный датчик участвует в работе ДВС только на ХХ. Является ненадежным и часто выводимым из строя. В последствие с переходом на систему Е-ГАЗ регулятор холостого хода убрали.

Признаки неисправности РХХ:

  • ДВС глохнет на ХХ;
  • Высокие обороты на ХХ;
  • Большой расход топлива;

Датчик фаз (ДФ)


Датчик фаз расположен:

Признаки неисправности ДФ:

  • Увеличенный расход топлива;
  • Вибрации ДВС;

Датчик педали тормоза


Датчик педали тормоза устанавливается на автомобили для включения стоповых огней (стоп-сигналов) в момент торможения автомобиля. В автомобилях с системой Е-ГАЗ датчик педали тормоза так же связан с ЭБУ и учасвует в работе педали газа для более ровного распределения нагрузки двигателя.

Признаки неисправности:

  • Отказ педали газа;
  • Рывки при движении;
  • Потеря динамики и мощности авто;

Датчик скорости (ДС)


Датчик скорости устанавливается в корпусе КПП вблизи выпускного коллектора. Предназначен для подсчета скорости движения автомобиля и корректировки оборотов при движении на нейтральной передаче.

Признаки неисправности ДС:

  • Увеличенный расход горючего;
  • Отсутствие путевых оборотов ХХ;
  • Провалы при резком нажатии на педаль газа;
  • Неработоспособность спидометра;

Датчик кислорода (ДК, лямбда зонд)


Датчик кислорода он же лямбда зонд устанавливается в выпускном коллекторе и предназначен для фиксации отработанных углекислотных газов. В некоторых моделях автомобилей, которые выпускались после 2010 г.в. имеется 2 датчика кислорода. Служит для корректировки топливовоздушной смеси, основываясь на замерах углекислого газа.

Признаки неисправности ДК:

  • Большой расход топлива;
  • Потеря мощности двигателя;
  • Тяжелый запуск ДВС;

Модуль зажигания (МЗ)



Для образования искры в ВАЗ 2114 используется модуль зажигания, который обеспечивает надежное образование искры в ходе работы двигателя. Данная деталь является одной из важнейших электрических устройств во всем автомобиле.

Хоть данный элемент и является надежным, но все же рано или поздно он способен выйти из строя тем самым значительно повлиять на работу двигателя и даже полностью остановить его. Когда МЗ на ВАЗ 2114 выходит из строя его не зная признаки его неисправности и способы проверки можно не сразу понять, что поломка именно в нем.

В данной статье подробно рассказывается о модуле (катушке) зажигания ВАЗ 2114, а именно о его конструкции, причинах поломки, признаках неисправности, способах проверки и замены данной детали.

Назначение


Модуль зажигания применяется для образования искры и служит своего рода повышающим трансформатором, который поднимаем напряжение с 12 до 40 000 Вольт. Такое высокое напряжение необходимо для образования мощной искры в камере сгорания и эффективного воспламенения топливной смеси.

Существует автомобиль Лада Супер авто построенный на базе 2114 с мотором от Приоры, в таком двигателе отсутствует модуль зажигания, а вместо него применяется индивидуальная катушка зажигания, которая устанавливается на каждый цилиндр.

Модуль зажигания в отличие от ИКЗ отвечает сразу за 4 цилиндра.

Конструкция МЗ

Модуль выполняется из пластика имеющего высокое сопротивление и термическую стойкость. Внутрь корпуса помещены две катушки, каждая из которых отвечает за работу двух цилиндров 1-4, 2-3.

Ниже на картинке представлен модуль зажигания в разрезе.


Признаки неисправности

К неисправностям МЗ можно отнести большое количество признаков, чаще всего они схожи с неисправностью свечи и неисправностью высоковольтных проводов.

Если на вашем автомобиле появились следующие проблемы, то вероятнее всего неисправен именно модуль зажигания:

  • Двигатель двоит (не работает сразу два цилиндра) либо 1-4, либо 2-3. Это один из достоверных признаков поломки МЗ.
  • Двигатель теряет мощность и тягу;
  • При нажатии на педаль газа появляются рывки и двигатель троит;
  • Сложный запуск ДВС на горячую;

При обнаружении таких симптомов на автомобиле необходимо проверить все детали, отвечающие за подачу искры, свечи, провода и модуль.

Проверка модуля зажигания

Проверка модуля заключается в двух этапах: визуальная проверка и с помощью прибора. Начнем с визуальной.

Визуальная проверка


Необходимо демонтировать модуль и при демонтаже обратить внимание на контакт высоковольтных проводов с МЗ, а так же на контакт разъема низкой стороны. Провода должны фиксироваться надежно, в них не должно быть влаги и следов окисления.

Далее снятый МЗ необходимо осмотреть на предмет сколов и пробоев. Пробой катушки вызывает следы повреждения на эпоксидной части модуля, а именно на нижней его части.

Проверка тестером


Для проведения такой проверки необходим мультиметр, способный работать в режиме омметра и вольтметра. Оба эти параметра показывают, в каком состоянии сейчас находится МЗ и исправна ли его цепь управления. Случается, что в поломке виноват не МЗ, его цепь управления и тогда к ремонту необходимо подключать опытного электрика, который сможет найти причину.

Проверка цепи питания

  • Переводим переключатель мультиметра в режим измерения постоянного напряжения пределом 20 Вольт.
  • Снимаем разъем питания с модуля и включаем зажигание на автомобиле.
  • Подключаем один щуп мультиметра к разъему, а именно к контакту 15 (нумерация на разъеме присутствует), второй щуп подключаем на корпус двигателя (масса). Напряжение между двумя этими точками должно быть 12 Вольт. Если показания на приборе отличаются и напряжение намного меньше или вовсе отсутствует, то это свидетельствует о поломке в цепи питания.


Проверка модуля

  • Переводим переключатель мультиметра на режим измерения сопротивления пределом 200 Ом. Данная проверка заключается в измерении сопротивления первичной и вторичной обмоток.
  • Подключаем щупы к выводам вторичной обмотки, а именно 1-4, 2-3. Показания на приборе между двумя этими точками должны быть около 5 Ом.
  • Затем измеряем сопротивление первичной обмотки. Для этого подключаем один щуп к центральному контакту, а второй к любому из крайних контактов. Сопротивление между двумя контактами должно быть не менее 5 Ом.


Подмена

Один из самых проверенных методов проверки мультиметра – это замена его на исправный. Таким методом пользуется большинство автовладельцев. Необходимо найти ВАЗ 2114 с таким же двигателем и снять установить МЗ с данного авто на свое и провести запуск ДВС. Если на модуле зажигания с другого авто былых проблем не наблюдается, можно смело покупать новый МЗ и продолжать эксплуатировать автомобиль.

Почему МЗ выходит из строя

Причиной поломки модуля зажигания является старение и пробой изоляции. Наиболее часто МЗ выходит из строя по вене пробитых высоковольтных проводов, из-за чего искра с модуля попадает на корпус, тем самым подвергая его излишним токам.


Старые свечи зажигания имеют большое сопротивление из-за нагара, что может вызывать пробой на корпус, который приводит к поломке модуля зажигания.


Следует менять свечи каждые 30-40 тысяч км пробега, а так же осматривать высоковольтные провода на предмет пробоя.

Где находится

Модуль зажигания на ВАЗ 2114 находится на специальном кронштейне, который прикручен к блоку цилиндров.


Цена МЗ

Стоимость МЗ зависит от производителя, магазина и региона в котором Вы проживаете. Средняя цена модуля зажигания ВАЗ 2114 равна 2000 рублей.

Актуальные цена можно увидеть на яндекс.маркете.

Замена модуля

Замену модуля произвести довольно просто, данная работа не требует больших усилий и навыков в ремонте автомоблия. Для проведения замены необходимо лишь подготовить трещету с головкой на 10мм.



  • Откручиваем 4 гайки крепления модуля к кронштейну;
  • Снимаем модуль и устанавливаем в обратной последовательности;


Подключать высоковольтные провода необходимо строго в определенной последовательности.

Схема подключения высоковольтных проводов

Подключать провода необходимо в определенной последовательности, перестановка проводов не допускается. Если перепутать провода, то искра будет подавать не в тот цилиндр в котором происходит такт сжатия топливной смеси, что приведет к невозможности запустить ДВС.

Нумерация цилиндров ваз 2114 начинается от ремня ГРМ слева направо.


Последовательность счета цилиндров


Номер разъема отвечает за работу конкретного цилиндра

Видео проверка МЗ


Регулятор холостого хода (РХХ) служит для поддержания установленных оборотов двигателя на холостом ходу за счет изменения количества воздуха, подаваемого в двигатель при закрытом дросселе. РХХ расположен на дроссельном патрубке и представляет собой шаговый двигатель анкерного типа с двумя обмотками. При подаче импульса на одну из них игла делает один шаг вперед, на другую — шаг назад. Через червячную передачу вращательное движение шагового двигателя преобразуется в поступательное движение штока. Конусная часть штока располагается в канале подачи воздуха для обеспечения регулирования холостого хода двигателя. Шток регулятора выдвигается или втягивается в зависимости от управляющего сигнала контроллера. Регулятор холостого хода частоту вращения коленчатого вала на режиме холостого хода, управляя количеством воздуха, подаваемым в обход закрытой дроссельной заслонки. В полностью выдвинутом положении (выдвинутое до упора положение соответствует "0" шагов), конусная часть штока перекрывает подачу воздуха в обход дроссельной заслонки. При открывании клапан обеспечивает расход воздуха, пропорциональный перемещению штока (количеству шагов) от своего седла. Полностью открытое положение клапана соответствует перемещению штока на 255 шагов. На прогретом двигателе контроллер, управляя перемещением штока, поддерживает постоянную частоту вращения коленчатого вала на холостом ходу независимо от состояния двигателя и от изменения нагрузки.
В системах "Микас" чаще применяется несколько другое название — Регулятор Добавочного Воздуха (РДВ). РДВ имеет другую конструкцию: вместо шагового двигателя применен моментный двигатель, который поворачивает запорный элемент на определенный угол, пропорциональный напряжению.

Дипазон напряжения питания В: 7,5-14,2 для РХХ212-1148300-02 (Производство КЗТА) и РХХ212-1148300-01 (Производство ОАО Пегас, г. Кострома)

Тестирование
Выключить зажигание. Отсоединить колодку жгута от регулятора. С помощью мультиметра проверить сопротивление обмоток РХХ. Сопротивление между контактами системы регулировки холостого хода А и В, и С и D должно быть 40-80 Ом. Если нет заменить РХХ. Если да Проверить сопротивление между контактами В и С, А и D. Прибор должен показывать бесконечность(обрыв цепи). Если нет заменить РХХ. Если да цепь РХХ в порядке.


BOSH 0 280 218 004, 037, 116
Чтобы с приемлимой точностью оценить состояние датчика, необходимо несколько минут, рожковый ключ на 10, фигурная отвёртка и китайский тестер со свежей батарейкой.
1. Включаем тестер в режим измерения постоянного напряжения, и выставляем предел измерения 2 Вольта. Находим в разъёме датчика провод жёлтого-выход (ближний по расположению к лобовому стеклу) и зелёного-масса (третий с того же края). Это нужные нам выводы датчика. В системах разных лет цвета могут меняться(! да и разъём может быть уже меняным), неизменным остаётся только расположение выводов. Для оценки состояния ДМРВ, необходимо измерить напряжение между указанными выводами при включенном зажигании, но НЕ заводя двигатель! Щупы тестера по диаметру позволяют внедриться сквозь резиновые уплотнители разъёма, вдоль указанных проводков, не нарушая их изоляции, добираясь до самих контактов и не причинять вреда самим уплотнителям. Полезно будет смазкой ВД пшикнуть на щупы. Включаем зажигание, подключаем тестер, снимаем показания. Эти же показаниия можно снять и без тестера с табло бортового компьютера, у кого он есть. В группе параметров "напряжения с датчиков". Обозначается Uдмрв=…
2. Оцениваем результаты. Напряжение на выходе исправного датчика в состоянии "из упаковки" 0.996…1.01 Вольта. В процессе эксплуатации оно постепенно меняется, и как правило увеличивается. По увеличению этого напряжения можно вполне уверенно судить о степени "износа" датчика. Попадание напряжения в указанный выше диапазон — лучший результат этой проверки. Дальше возможны варианты:
1.01…1.02 — вполне рабочий датчик, очень неплохо.
1.02…1.03 — тоже приемлимо, но датчик уже не молодой.
1.03…1.04 — большая часть ресурса уже позади, можно планировать скорую замену.
1.04…1.05 — явно уставший датчик, своё он уже отслужил. Если бюджет позволяет, смело меняем.
1.05…и выше — источник проблем, давно пора заменить.
3. Если по результатам оценки датчик имеет отклонения, да в общем, даже если и не имеет, но раз руки уже дошли, проводим визуальный осмотр. Фигурной отвёрткой откручиваем хомут резинового гофра-воздухоприёмника на выходе датчика, стаскиваем с него гофр, и внимательно осматриваем внутренние поверхности и самого датчика и гофра. Внимание! эти поверхности должны быть сухими и чистыми как… у младенца, без следов конденсата и масла! Их попадание на чувствительный элемент датчика- наиболее частая причина преждевременной его кончины. Случается это и по причине превышения уровня масла в картере, и по причине забитости маслоотбойника системы вентиляции картера, исход как правило один. При наличии этого явления во впускном тракте замена датчика противопоказана! До устранения причин, чтобы не было мучительно больно потом за бесцельно потраченные деньги.
4. ключом на 10 откручиваем 2 винта, крепящие датчик к корпусу воздушного фильтра, извлекаем датчик. На передней части его- на входном крае, который только что извлекли из фильтра, должно по закону, красоваться резиновое кольцо-уплотнитель. Служит оно одной цели- предотвратить подсос нефильтрованого воздуха во впускной тракт через датчик и далее в поршневую группу. Как правило, кольцо не на месте- оно застряло в корпусе воздушного фильтра, и уклоняется от прямых обязанностей. Подтверждением тому может служить тонкий слой пыли на входной сеточке самого датчика. Проводим по ней пальцем, делаем выводы. Если резинка была на месте, делаем выводы о её эластичности или качестве воздушного фильтра. Ещё одна причина, убивающая чувствительный элемент! Достаём кольцо и восстанавливаем законность при сборке. Кольцо имеет на внутренней поверхности уплотнительный поясок- юбку. При сборке следим, чтобы она не завернулась, тоже источник подсоса пыли. Про воздушный фильтр понятно. Сборка за исключением уплотнительной резинки хитрости не имеет — её сначала на датчик, проверяем уплотнительную юбку, затем всё вместе в корпус фильтра. Тогда датчик заходит в корпус фильтра с уже заметным усилием. Закручиваем винты.
Описанный способ не является исчерпывающим и абсолютным, но в рамках любительской экспресс-проверки вполне достоин внимания. Более точный способ только при наличии профессионального оборудования.
_______________________________________________

ДТОЖ (Датчик температуры охлаждающей жидкости)


Представляет собой термистор, т.е. резистор, электрическое сопротивление которого изменяется в зависимости от температуры. Термистор, расположенный внутри датчика имеет отрицательный температурный коэффициент сопротивления, т.е. при нагреве его сопротивление уменьшается. Высокая температура вызывает низкое сопротивление (70 Ом при 130град.) датчика, а низкая температура охлаждающей жидкости — высокое сопротивление (100800 Ом при -40град.).При замене датчика не забудьте отвинтить крышку-клапан с расширительного бачка системы охлаждения чтобы сбросить давление. Зависимость сопротивления датчика температуры охлаждающей жидкости от температуры (ориентировочно) .

Температура — сопротивление Ом:


Ну соответственно все умеем пользоваться тестером. Так что меряйте сопротивление

ДПКВ (Датчик положения коленчатого вала).


ЭБУ, установленный на инжекторных авто, управляя датчиками и исполнительными механизмами, для правильной и эффективной работы должен точно знать, в каком положении находится коленвал двигателя в каждый момент времени – другими словами иметь чёткую синхронизацию между цифрой и железом. Это необходимо в первую очередь для расчёта и своевременной подачи импульса впрыска на форсунки и ВВ-разряда на свечи зажигания. От своевременности этих событий зависит мощность, долговечность и экономичность двигателя, поэтому необходимость точного определения блоком управления положения коленвала в любой момент времени сомнений не вызывает. Синхронизация осуществляется с помощью датчика коленвала (ДПКВ) и зубчатого задающего диска, закреплённого на коленвалу в определённом положении. На окружности диска помещается 60 зубьев, на кажый зуб приходится (360:60)=6 градусов угла поворота коленвала. Но двух зубьев подряд в одном месте преднамеренно нет, их отсутствием образован пропуск. Итого 58. Задающий диск установлен таким образом, что после пропуска двух зубьев сердечником ДПКВ, по ходу вращения коленвала, до ВМТ остаётся 114 градусов. Каждый зуб это 6 градусов. Итого 114:6=19 целых зубьев. Другими словами, когда коленчатый вал стоит в положении ВМТ первого цилиндра на такте сжатия, когда все риски (на маховике, распредвалу\валах) совмещены, датчик коленвала должен смотреть на начало двадцатого зуба после пропуска, по ходу вращения диска. 7.jpg (30,92К)
Количество загрузок:: 926К сожалению, на практике это не всегда так. Бывает, что срезает шпонку на шестерне коленвала, 5.jpg (32,12К)
Количество загрузок:: 871 Чаще всего даже не ту, на которую указывает стрелка, а на самой шестерне цилиндрический выступ, который и определяет положение диска на шестерне коленвала. Бывает в самом КВ не до конца нарезана резьба, или забита в конце, и крепящий болт не прижимает диск с нужным усилием к шестерне коленвала, бывает проворачивает резиновый демпфер самого шкива, и зубчатый венец проворачивает относительно КВ. Итог один: Если задающий диск относительно КВ уходит хотя бы на 1 зуб, на 6 градусов смещается угол опережения зажигания на всех режимах работы и фаза впрыска со всеми вытекающими.

Если поглядеть на задающий диск со стороны головки крепящего болта, а метки выставить, пропуск зубьев будет (если по часовому циферблату) где-то на 10 минут.(вращение диска по часовой стрелке) 6.jpg (33,78К)
Количество загрузок:: 727Грубо говоря в этот момент он смотрит на проверяющего под капотом. Проверяем точность совпадения меток, и считаем зубья от пропуска по окружности против хода часовой стрелки. На начало 20-го зуба должен смотреть сердечник датчика коленвала. Если это так, проверка окончена.

1 – аккумуляторная батарея;
2 – выключатель зажигания;
3 – реле зажигания;
4 – свечи зажигания;
5 – модуль зажигания;
6 – контроллер;
7 – датчик положения коленчатого вала;
7 – датчик положения коленчатого вала;
8 – задающий диск;
А – устройства согласования

Рабочий диапазон
Сопротивление ДПКВ в инжекторном двигателе должно быть между 550-750 Ом.


ДПДЗ (Датчик положения дросельной заслонки)


Установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки. Датчик (ДПДЗ)представляет собой потенциометр, на один конец которого подаётся плюс напряжения питания (5 В), а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идёт выходной сигнал к контроллеру. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. Чтобы проверить работоспособность датчика, измерим напряжение на этом контакте при закрытой заслонке. Оно должно быть в пределах 0,3-0,7 В (Лучше 0,7). Когда заслонка открывается, напряжение на выходе датчика растёт и при полностью открытой заслонки должно быть более 4 В. Отслеживая выходное напряжение датчика контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. контроллер самостоятельно определяет минимальное напряжение датчика и принимает его за нулевую отметку.

Еще есть БЕСКОНТАКТНЫЕ датчики нового образца, производства Курского завода "СчетМаш". ТУ 4591-034-00225331-2002. С 2003 года устанавливают и такие.


Принцип действия датчика скорости (ДС) основан на эффекте Холла. Датчик выдаёт на контроллер импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колёс. Датчики скорости различаются по присоединительным разъёмам к колодке жгута. Квадратный разъём применяется в системах БОШ. Датчик с круглым разъёмом применяется в системах Январь 4 и GM. Все датчики 6-ти импульсные, то есть выдают 6 импульсов за один оборот своей оси. 10-ти импульсный датчик применяется для маршрутных компьютеров карбюраторных "Самар". Сигнал датчика скорости используется системой управления для определения порогов отключения подачи топлива, а также для электронного ограничения скорости автомобиля (в новых системах управления).

Устанавливать привод спидометра в тех моделях, где он есть, в коробку передач нужно очень аккуратно, при малейшем перекосе сомнутся пластмассовые зубья ведущей шестерни привода спидометра и — полная разборка коробки передач неизбежна.

Когда стрелка спидометра начинает самопроизвольно отклоняться в довольно широких пределах независимо от скорости – пришла пора менять датчик скорости.
Выходное напряжение низкого уровня импульса должно быть не более 1В, а высокого уровня — не менее 5В.


Датчик детонации — устройство, предназначенное для определения момента возникновения детонации в двигателях внутреннего сгорания. Является одним из датчиков электронных систем управления двигателем автомобиля с впрыском топлива.
Существуют два типа датчика детонации – резонансный ( бочонок ) и широкополосный ( таблетка ). Датчик детонации разных типов не взаимозаменяемы.
Принцип действия датчика основан на пьезоэффекте. Датчик крепится на блок цилиндров двигателя, при возникновении детонации происходит вибрация двигателя, приводящая к сжатию пьезоэлектрической пластины датчика, в результате чего на её концах возникает разность потенциалов.
На основании электрических импульсов датчика, электронный блок управления двигателем выбирает оптимальный угол опережения зажигания, что позволяет добиться наиболее полного и эффективного сжигания топливо-воздушной смеси в цилиндрах двигателя, а так же автоматически адаптироваться к топливу с различным октановым числом.

Для проверки датчика детонации подсоединяем к его контакту и корпусу тестер.
Слегка постукивая стержнем из мягкого металла по резьбовой части датчика, измеряем импульс напряжения.
В зависимости от интенсивности ударов у исправного датчика импульс напряжения может достигать 300 мВ.

Датчик кислорода (лямбда-зонд).



Установлен в приемной трубе системы выпуска отработавших газов. Кислород, содержащийся в отработавших газах, создает разность потенциалов на выходе датчика, изменяющуюся приблизительно от 0,1 В (много кислорода — бедная смесь) до 0,9 В (мало кислорода — богатая смесь). По сигналу от датчика кислорода контроллер корректирует подачу топлива форсунками так, чтобы состав отработавших газов был оптимальным для эффективной работы нейтрализатора (напряжение кислородного датчика — около 0,5 В). Для нормальный работы датчик кислорода должен иметь температуру не ниже 360°С, поэтому для быстрого прогрева после запуска двигателя в него встроен нагревательный элемент. Контроллер постоянно выдает в цепь датчика кислорода стабилизированное опорное напряжение 0,45±0,10 В. Пока датчик не прогрет, опорное напряжение остается неизменным. При этом контроллер управляет системой впрыска, не учитывая напряжение на датчике. Как только датчик прогреется, он начинает изменять опорное напряжение. Тогда контроллер отключает нагрев датчика и начинает учитывать сигнал датчика кислорода.

Чувствительный элемент датчика кислорода находится в потоке отработавших газов. При достижении датчиком рабочих температур, превышающих 360 град. С, он начинает генерировать собственную ЭДС, пропорциональную содержанию кислорода в отработанных газах. На практике, сигнал ДК (при замкнутой петле обратной связи) представляет собой быстро изменяющееся напряжение, колеблющееся между 50 и 900 милливольт. Изменение напряжения вызвано тем, что система управления постоянно изменяет состав смеси вблизи точки стехиометрии, сам ДК не способен генерировать какое-либо переменное напряжение.

Выходное напряжение зависит от концентрации кислорода в отработавших газах в сопоставлении с опорными данными о содержании кислорода в атмосфере, поступающими с элемента конструкции датчика, служащего для определения концентрации атмосферного кислорода. Этот элемент представляет собой полость, соединяющуюся с атмосферой через небольшое отверстие в металлическом наружном кожухе датчика. Когда датчик находится в холодном состоянии, он не способен генерировать собственную ЭДС, и напряжение на выходе ДК равно опорному (или близко к нему).
Для ускорения прогрева датчика до рабочей температуры он снабжен электрическим нагревательным элементом. Различают датчики с постоянным и импульсным питанием нагревательного элемента, в последнем случае, подогревом ДК управляет ЭБУ. Электронный блок управления постоянно подаёт на цепь датчика стабильное опорное напряжение 450 милливольт. Непрогретый датчик имеет высокое внутреннее сопротивление и не генерирует собственную ЭДС, поэтому, ЭБУ "видит" только указанное стабильное опорное напряжение. По мере прогрева датчика при работающем двигателе его внутреннее сопротивление уменьшается, и он начинает генерировать собственное напряжение, которое перекрывает выдаваемое ЭБУ стабильное опорное напряжение. Когда ЭБУ "видит" изменяющееся напряжение, ему становится известным, что датчик прогрелся, и его сигнал готов для применения в целях регулирования состава смеси.
Датчик кислорода, применяемый в серийных системах впрыска, не способен регистрировать изменения состава смеси, заметно отличающиеся от 14,7:1, в силу того, что линейный участок его характеристики очень "узкий" (см. график выше по тексту). За этими пределами лямбда – зонд почти не меняет напряжение, то есть не регистрирует изменения состава ОГ.

На автомобилях ВАЗ прежних модификаций (1,5 л.) в системах Евро-2 применялся датчик BOSCH 0 258 005 133. В системах Евро-3 он применялся в качестве первого ДК, устанавливаемого до катализатора. Вторым ДК, для контроля содержания вредных выбросов после катализатора устанавливается датчик с "обратным" разъемом (хотя, в встречаются и авто с одинаковыми). В новых автомобилях 1,5/1,6 л., с системой впрыска Bosch M7.9.7 и Январь 7.2, выпускаемых с октября 2004 г. устанавливается датчик BOSCH 0 258 006 537. Внешние отличия смотрите на фотографиях. Новый ДК имеет керамический нагреватель, что позволяет существенно снизить потребляемый им ток и уменьшить время прогрева.

Для замены вышедших из строя оригинальных лямбда-зондов фирма Bosch выпускает специальную серию из 7 универсальных датчиков, которые перекрывают практически весь диапазон применяемых штатно датчиков.

Читайте также: