Для уменьшения токсических веществ в выхлопных газах автомобилей необходимо

Добавил пользователь Владимир З.
Обновлено: 19.09.2024

Отработанные газы, выводимые из цилиндров двигателей внутреннего сгорания через такт выпуска в атмосферу, имеют в своём составе многочисленные газообразные, жидкие и твердые компоненты (всего - около 200 химических элементов и их соединений). Эти вещества можно объединить в несколько групп в зависимости от химического состава, свойств и характера воздействия на окружающую среду и организм человека.
В первую очередь такие вещества следует разделить на две основные группы - токсичные (вредные для живой природы и человека) и нетоксичные (относительно безвредные).
Концентрация вредных веществ в общем объеме газов, выбрасываемых двигателем в атмосферный воздух, измеряется в процентах к общему объему или в миллионных долях этого объема.

Единицы измерения концентрации газов

Чтобы в дальнейшем понимать, какими единицами измерения оперируют специалисты при анализе количественного содержания тех или иных компонентов в отработавших газах, необходимы следующие пояснения.
Содержание измеряемых компонентов выхлопных газов оценивается в следующих единицах измерения:

Так, например, концентрация углекислого газа (CO2) в атмосфере Земли составляет около 380 ppm, и это означает, что в каждом кубометре воздуха 0,380 мл (почти 2 стакана) углекислого газа. В процентах это выражение будет записано, как 0,038 %.
Исправный автомобиль под нагрузкой должен иметь содержание x, в выхлопных газах менее 1000 ppm. Если указать эти значения в процентах, то запись будет выглядеть следующим образом: содержание x в выхлопных газах не должно превышать 0,1%.
Очевидно, что отклонение значения, например, на 50 миллионных долей при записи в процентах (0,005%) интуитивно не воспринимается, как существенное изменение, а при записи в ppm (50 ppm) заставляет обратить внимание.

Нетоксичные компоненты отработавших газов

К нетоксичным (безвредным) компонентам выхлопных газов относятся естественные составляющие атмосферного воздуха (например, водяной пар, свободный азот, кислород). Эти вещества не вызывают существенных патологий в организме живых существ (в т. ч. человека) даже при относительно высокой концентрации. Пар является газообразной фазой воды, кислород и свободный азот являются основными компонентами атмосферного воздуха, поэтому эти вещества не наносят ощутимого вреда живой природе, даже если их содержание в выхлопных газах будет значительным.

Тем не менее, по количественному содержанию этих веществ в отработавших газах можно сделать определенные выводы о техническом состоянии работающего теплового двигателя и его систем.
Так, например, чрезмерное содержание водяного пара в выхлопных газах может свидетельствовать о неисправности прокладки головки блока цилиндров, трещинах в цилиндре или головке блока, из-за чего охлаждающая жидкость попадает в цилиндры двигателя.

Кислород (О2) в цилиндрах двигателя вступает в реакцию с топливом, вызывая процесс горения. Уровень кислорода в выхлопных газах должен быть низким, не более 0,5%. Более высокие значения, особенно при работе двигателя на холостом ходу, могут быть вызваны плохой герметичностью впускного тракта, сопровождающейся работой двигателя на чрезмерно бедной топливовоздушной смеси. Такие отклонения позволяют диагностировать определенные неполадки в системе питания двигателя.

Газообразный азот (N) достаточно инертен, поэтому сам по себе не является опасным для живой природы веществом и не представляет ценности с точки зрения термодинамики теплового двигателя, поскольку не является ни топливом (как например углерод или водород), ни окислителем (как кислород). Тем не менее, его доля в атмосферном воздухе составляет почти 78 %, поэтому в любом случае после сжигания автомобильного топлива образуются те или иные азотосодержащие соединения. Многие из этих соединений являются очень токсичными веществами.

Относительно безопасным компонентом выхлопных газов двигателя считается двуокись углерода (СО2, угольный ангидрид, углекислота или углекислый газ) - газообразное химическое соединение, не обладающее цветом и запахом. Этот газ примерно в 1,5 раза тяжелее воздуха, а его концентрация в атмосфере Земли составляет примерно 0,04 %. В течение суток организм человека поглощает и использует в процессах обмена веществ почти 1 кг двуокиси углерода, которая затем покидает организм при выдохе.
Тем не менее, дышать при избыточной конценрации углекислого газа в воздухе для здоровья вредно, поскольку он относится к удушающим газам. Незначительная концентрация (до 2-4%) в непроветриваемом помещении приводит к появлению сонливости и слабости, при концентрации выше 7-10% развивается удушье, проявляющее себя в головной боли, головокружении, расстройстве слуха и даже в потере сознания. К счастью отравление этим газом не приводит к необратимым последствиям, и после вдыхания свежего воздуха организм вскоре восстанавливается.
Допустимое содержание СО2 в отработавших газах - 12…15%, при этом высокие значения свидетельствуют о хорошей работе двигателя, поскольку углерод топлива полностью сгорает.

Токсичные компоненты отработавших газов

Угарный газ (оксид углерода СО)

Оксид углерода - ядовитый газ без цвета, вкуса и запаха. Вступая в легких в реакцию с кислородом воздуха, лишает мозг кислорода. Выделяется при неполном сгорании топлива, имеет ярко выраженное отравляющее воздействие. Степень отравления зависит от его концентрации и продолжительности воздействия на человека. При дозах свыше 1 % возможна потеря сознания и смерть.

Окись углерода (СО) - неустойчивое химическое соединение, легко вступающее в реакцию с кислородом, в результате которой образуется относительно безопасное соединение - двуокись углерода СО2 (допустимая концентрация в выхлопных газах – 12…15%). Высокое содержание СО2 в выхлопе свидетельствует о хорошей работе двигателя, рационально сжигающего топливо.
Уровень СО в выхлопных газах для современных автомобилей с впрыском топлива не должен превышать 0,5%.
Возможные причины повышения содержания СО следующие:

  • неисправность систем вентиляции картера;
  • засорение воздушного фильтра;
  • неправильная регулировка работы двигателя на холостом ходу;
  • повышенное давление топлива в рампе;
  • любые другие неисправности, приводящие к работе двигателя на чрезмерно богатых для данного режима топливовоздушных смесях (ТВС).

Оксиды азота NO и диоксиды азота NO2

Оксид азота - бесцветный газ без вкуса и запаха.
Двуокись азота 2 - рыжеватый газ с кислым едким запахом.
Из этих компонентов в камере сгорания двигателя образуется группа окислов азота, для краткости обозначаемых, как x (например, NO3, NO4 и пр.).

Окислы азота считаются более опасными, чем угарный газ, при этом наиболее негативное воздействие на человеческий организм оказывает диоксид азота - NO2.
При окислении оксида азота кислородом воздуха образуется диоксид азота - газ тяжелее воздуха, который скапливается в нишах и углублениях, и весьма опасен при техобслуживании автомобилей. Негативно влияет на органы дыхания, слизистую оболочку и на ткани лёгких, при длительном воздействии возможно заболевание бронхитом и нарушение деятельности сердечнососудистой системы.
При соединении окислов азота с углеводородными компонентами СnНm (остатки несгоревшего топлива) в атмосфере под воздействием солнечных лучей образуется фотохимический компонент, чрезвычайно вредный для органов дыхания человека.

Окислы азота x, формируются в камере сгорания двигателя при температуре выше 1370 °С или при большом давлении, что характерно для режимов работы двигателя под высокой нагрузкой.
Повышенное содержание x, в выхлопных газах обычно имеет место, когда:

  • двигатель перегрет;
  • топливная смесь бедная.

Эффективной мерой борьбы против образования x является применение системы рециркуляции выхлопных газов.

Ароматические углеводороды (соединения вида СnНm)

Углеводороды nНm) – это компоненты несгоревшего топлива, их содержание измеряется в частях на миллион по объему (ppm или млн -1 ). Нормально работающий двигатель сжигает в цилиндрах практически все топливо, допустимое содержание СnНm должно быть менее 50 ppm.
Если топливо сгорает не полностью, в атмосферу выбрасывается бензин, который является канцерогеном. Причиной повышенного содержания углеводородов в выхлопных газах может являться, например, чрезмерное попадание масла в цилиндры двигателя через неисправные поршневые кольца.

Чаще всего увеличенное содержание вызывается неполадками в системе зажигания. Неправильная регулировка двигателя, позднее зажигание и пониженная температура в камере сгорания приводит к появлению дыма.
Углеводородные соединения токсичны, влияют на сердечнососудистую систему и являются сильными канцерогенами.

Остальные компоненты автомобильных выхлопов (альдегиды, сернистые соединения, свинец) не менее вредны для организма человека, но их процентное содержание в отработавших газах незначительно по сравнению с перечисленными выше компонентами.

Своевременная и квалифицированная регулировка работы двигателей внутреннего сгорания с помощью автомобильных газоанализаторов позволяет значительно уменьшить содержание вышеперечисленных вредных веществ в отработанных газах автомобилей.

Пути снижения вредных автомобильных выбросов

В общем случае сокращения объёма вредных выбросов в выхлопных газах автомобилей можно достичь:

  • применением альтернативных видов топлива;
  • установкой каталитических нейтрализаторов в системы выпуска автомобилей;
  • поддержанием на допустимом уровне содержания токсичных веществ в отработавших газах двигателей за счет оптимизации контроля и настроек систем, влияющих на количественную и качественную составляющую вредных выбросов;
  • применением гибридных конструкций автомобилей;
  • правильной организацией дорожного движения.

В большой степени на содержание токсичных примесей в выхлопных газах влияет техническое состояние и регулировка систем питания и зажигания двигателей внутреннего сгорания. При неправильной регулировке вредные выбросы бензиновых двигателей могут увеличиться в 2, а дизельных - в 20 раз.

1.Совершенствование двигателя внутреннего сгорания. Автомобили ведущих фирм Европы и США выбрасывают в атмосферу в настоящее время в 10-16 раз меньше вредных веществ, чем в 80-х годах 20 в., этому способствовали такие нововведения как двигатели, работающие на переобедненных смесях, многоклапанные системы перераспределения, впрыск топлива вместо карбюраторного смесеобразования, электронное зажигание. При запуске холодного двигателя используются автоматы пуска и прогрева; на режимах торможения применяют устройство принудительного холостого хода (отключение подачи топлива).

Для уменьшения выбросов оксидов азота используется рециркуляция: часть отработанных газов снова поступает в двигатель, при этом понижается температура сгорания, и оксидов азота образуется меньше.

Автомобиль можно сделать экономически более чистым, применяя электронные системы управления, оптимизирующие работу двигателя, тормозов и других агрегатов.

2.Повышение качества автомобильных бензинов. В большинстве стран мира этилированный бензин в настоящее время не используют. Применяют добавки, не содержащие свинца и не снижающие качества бензина: метилтретичнобутиловый эфир (МТБЭ); этанол; бутанол. Наиболее распространенная добавка – МТБЭ, применение которого снижает содержание СО в выхлопных газах на 10-20%, несгоревших углеводородов – на 5-10%, других вредных летучих соединений на 13-17%.




Разработаны катализаторы, позволяющие проводить перегонку нефти с получением чистых, высокооктановых фракций без каких либо добавок.

3.Автомобили на газе. Перевод автомашин на газовое топливо позволит почти в 100 раз снизить выбросы в атмосферу канцерогенных веществ. Сократится расход нефтепродуктов: каждая тысяча газобаллонных автомобилей сэкономит на грузовых перевозках 12.тыс. т, на пассажирских – 30 тыс.т. бензина в год. Газовое топливо не требует присадок; оно продлевает срок службы двигателя в 1,5 раза; снижает вредные выбросы на 10%.

Разработан автомобиль, где окисление водорода происходит в электрохимическом генераторе, который вырабатывает электроэнергию. В генераторе используются полимерные мембраны, температура процесса 100 ºC. Это исключает синтез оксидов азота. КПД такого двигателя достигает 70% (КПД ДВС 25-45%).

5.Электромобиль. Интерес к этому виду транспорта возник в 1973 г. Вызвано это было не только энергетическими, но и экологическими проблемами. В США в 1993 г. в Калифорнии вступил в силу закон, предусматривающий обязательный выпуск национальными производителями не менее 2% электромобилей.

В Швеции создан 15-тонный грузовик, в двигателе которого совмещен электромотор с газовой турбиной. Электромотор используется на улицах городов, турбина - на загородных шоссе. Максимальная скорость 110 км/ч. Газовая турбина работает на этаноле (можно использовать метанол, природный газ).

6.Нейтрализаторы отработанных газов. Нейтрализатор – дополнительное устройство, которое соединено с выхлопной системой двигателя с целью снижения токсичности выхлопных газов. Применяют нейтрализаторы жидкостные, каталитические, комбинированные и фильтры.

Принцип действия жидкостных нейтрализаторов основан на растворении или химическом взаимодействии токсичных компонентов выхлопных газов при пропускании через воду, раствор сульфата натрия, бикарбоната натрия. Пропускание отработанных газов дизелей через воду приводит к уменьшению запаха, альдегиды поглощаются на 50%, сажа - на 60-80%. Недостаток этих нейтрализаторов - частая смена растворов, неэффективность по отношению к оксиду углерода (II), большая масса и размеры.




Комбинированные нейтрализаторы представляют собой соединенные последовательно жидкостной и каталитические нейтрализаторы.

Для улавливания сажи дизельных ДВС наибольшее применение находят фильтры. Они выполняются в виде нескольких пористых перегородок; обладают механической прочностью и стойкостью к агрессивным средам и высокой температуре.

Одним из мощных источников загрязнения городской воздушной среды является автомобильный транспорт, увеличение численности которого привело к насыщению городов легковыми автомобилями и переключению на них большей части пассажирских перевозок. Это резко ухудшает санитарные условия проживания в крупных городах: автомобиль не только загрязняет воздушную среду и создает шум, но, перевозя небольшое число пассажиров и работая на наиболее ценных видах топлива, использует его недостаточно эффективно. В связи с этим возникла необходимость разработки ряда мероприятий, позволяющих предотвратить загрязнение окружающей среды от автотранспорта.

С целью снижения негативного воздействия автотранспорта на атмосферный воздух в рамках представленной классификационной схемы (рис. 3) предусмотрены организационные (архитектурно-планировочные), технологические и специальные инженерно-экологические мероприятия.

Организационные мероприятия включают специальные приемы застройки и озеленение автомагистралей, размещение жилой застройки по принципу зонирования (в первом эшелоне застройки – от магистрали – размешаются здания пониженной этажности, затем – дома повышенной этажности и в глубине застройки – детские и лечебно-оздоровительные учреждения. Тротуары, жилые, торговые и общественные здания изолируются от проезжей части улиц с напряженным движением многорядными древесно-кустарниковыми посадками). Важное значение имеют сооружение транс­портных развязок, кольцевых дорог, использование подземного пространства для размещения гаражей и автостоянок.




Наибольший выброс выхлопных газов имеет место при задержках машин у светофоров, при стоянке с не выключенным двигателем в ожидании зеленого света, при трогании с места и форсировании работы мотора. Поэтому в целях снижения выбросов необходимо устранить препятствия на пути свободного движения потока автомашин. В частности, сооружают специальные автомагистрали, не пересекающиеся на одном уровне с движением машин или пешеходов, специальные переходы для пешеходов на всех пунктах скопления машин, а также эстакады или тоннели для разгрузки перекрывающихся потоков транспорта.

Для снижения загазованности воздушной среды необходимо ограничить количество вредных веществ, выделяемых каждым автомобилем, т.е. установить нормы выброса токсичных веществ с выхлопными газами. Соответствие автомобилей указанным стандартам (в частности, по содержанию оксида углерода и углеводородов в выхлопных газах) проверяют инспектора ГИБДД.

В качестве технологических мероприятий, которые могут резко снизить токсичность выхлопных газов, можно выделить следующие:

- изменение состава топлива;

- использование энергии торможения;

- перевод автомобилей на сжиженный газ;

- совершенствование двигателей внутреннего сгорания;

- применение альтернативных видов топлива;

- внедрение гибридных двигателей;

- внедрение в эксплуатацию электромобилей, солнечных автомобилей, а также применение электрического транспорта и др.

Изменение состава топлива. Известно, что в целях предотвращения детонации горючего в двигателях автомашин в него добавляют тетраэтилсвинец, который делает выхлопные газы особо токсичными. Поэтому большие усилия были затрачены на замену указанного вещества на менее опасные, а также на получение стойкого к детонации бензина. При введении в топливо т.н. присадок можно существенно уменьшить количество некоторых токсичных веществ: сажи, альдегидов, оксида углерода и других. Так, для карбюраторных, двигателей самым эффективным оказались смеси различных спиртов.

Использование энергии торможения. Заметного сокращения расхода энергии, а значит, количества сжигаемого топлива и уменьшения загрязнения воздушной среды можно достичь, если использовать энергию, затрачиваемую на торможение. Указанная рекуперация была впервые успешно реализована на электрическом транспорте. Ныне были построены и успешно использованы на автобусах маховичный и гидропневматический рекуператоры. При этом экономия топлива составила 27-40%. объем выхлопных газов снизился на 39-49%.




Перевод автомобилей на сжиженный газ приводит к тому, что в выхлопе газобаллонных автомобилей содержится в 3-4 раза меньше оксида углерода, нежели в выхлопе бензиновых двигателей. При загрузке в баллоны 300 л сжиженного газа автобус способен пройти без заправки до 500 км. Если добавить к этому, что газ дешевле бензина, то достоинства газобаллонного автомобиля становятся еще более наглядными.

Совершенствование двигателей внутреннего сгорания. Например, в США разработан карбюратор с раздельным смесеобразованием. Он позволяет кроме обычной смеси получать обогащенную, которая подается в специальную предкамеру со свечой зажигания. Благодаря этому происходит полное сгорание рабочей смеси, что, в свою очередь, позволяет свести до минимума содержание оксида углерода и углеводородов в выхлопных газах. Создан карбюратор, благодаря которому возможно использовать низкооктановые сорта бензина без антидетонационных добавок. В этом устройстве, со­стоящем из теплообменника, смесителя и реактора, бензин не только распыляется, но и расщепляется с помощью катализатора на более простые газы, например метан.

Во многих странах мира разрабатываются новые, более совершенные двигатели, которые можно устанавливать на серийных автомобилях. В частности, указывают на перспективность роторно-поршневого двигателя Ванкеля, который компактнее поршневых двигателей: объем в среднем на 30%, а масса на 11 % меньше.

Признаётся перспективным автомобиль с размещенным на его шасси химическим реактором, в котором вырабатывается водород из углеводородов. Расчеты показали, что иметь такой реактор на машине экономичнее, нежели возить это топливо в специальных баллонах.

Преградами на пути широкого внедрения водорода в качестве топлива для автомобильных двигателей является сложность получения его в достаточно больших количествах и необходимость обеспечения высокого уровня безопасности при осуществлении процесса горения водорода.

Перспективно широкое внедрение так называемых гибридных двигателей: в городе при относительно небольших скоростях должен использоваться только электромотор, питающийся от небольших батарей и обеспечивающий запас хода на 40-50 км, а при выезде за город должен включаться обычный двигатель. Одновременно электромотор может быть использован как генератор для подзарядки аккумулятора.

Электромобили. Весьма перспективным является проект массового перехода от автомобилей с бензиновыми и дизельными двигателями на электромобили, которые действуют от батарей – аккумуляторов, подзаряжаемых на станциях.

Электромобили бездымны, бесшумны, их выделения нетоксичны, они просты в управлений, а эксплуатация значительно экономичнее, особенно в городах. Этому способствует относительно небольшой среднесуточный пробег автомобилей в городе, ограничение скорости и возможность организации сети зарядных станций для батарей – аккумуляторов. Сейчас в мире эксплуатируется сотни тысяч электромобилей различного назначения, и парк их непрерывно растет.

Дальнейшие успехи в разработке электромобилей в основном, будут зависеть от решения ряда технических проблем (создания компактных, недорогих и легких аккумуляторов, разработка быстродействующих зарядных устройств). Укажем также на необходимость резкого уве­личения резервных мощностей электростанций, поскольку они недостаточны, если потребуется в перспективе ежедневная подза­рядка многих миллионов электромобилей.

Солнечный автомобиль использует солнечную (или световую) энергию, которая улавливается при помощи специальных солнечных батарей. Электромобиль на спиральных гидридно-никелевых батареях прошел несколько лет назад без подзарядки 601 км.

Улучшению качества атмосферного воздуха в сочетании со снижением шума способствует применение электрического транспорта (трамвая, троллейбуса).

Специальными инженерно-техническими мероприятиями, снижающими выбросы токсичных веществ от автотранспорта как основного передвижного источника, дающего наибольший вклад в загрязнение атмосферы, является применение нейтрализаторов, катализаторов.

Нейтрализаторы выхлопных газов. К настоящему времени выпускаются нейтрализаторы следующих видов: каталитические (используются твердые катализаторы), пламенные (дожигание примесей в открытом пламени), термические (метод беспламенного окисления) и жидкостные (с помощью химического связывания примесей жидкими реагентами). При этом широкое распространение получили каталитические нейтрализаторы, которые превращают токсичный оксид углерода в малоопасный диоксид.

способы снижения токсичности выхлопных газов

Резкое повышение концентрации вредных веществ в атмосферном воздухе, особенно в крупных мегаполисах, связанное с интенсивным ростом автомобильного парка, не могло остаться без внимания специалистов и экологов. Очевидно, что без автомобильного транспорта невозможно представить динамичное развитие человеческого общества, но и смириться с тем, что ежечасно миллионы людей отравляют свой организм, вдыхая отраву, выбрасываемую из автомобильных глушителей, конечно же, нельзя.
Поэтому разработкам, связанным с уменьшением вредного влияния транспорта на окружающую среду, ученые, специалисты и инженеры в последние годы уделяют все более пристальное внимание.

Конечно же, наиболее привлекательным методом исключения пагубного влияния техники на условия среды обитания человека является внедрение технологий и разработок, позволяющих использовать экологически чистые и безвредные энергоресурсы.

К таковым, безусловно, можно отнести электрическую энергию и энергию, выделяемую при химических процессах, конечным продуктом которых являются безвредные для человека и природы вещества, например, вода, образуемая при соединении водорода и кислорода. Эта химическая реакция сопровождается значительным выделением тепловой энергии, которую можно было бы использовать для преобразования в механическую энергию посредством тепловых двигателей, однако в окружающей нас природе мало свободного водорода, который можно было бы использовать в виде автомобильного топлива.
Конечно, на нашей планете достаточно большое количество воды, в составе которой водорода более, чем достаточно, но расщеплять воду на составляющие элементы для последующего соединения – все равно, что изобретать вечный двигатель, поскольку затраты превысят эффект.

Электричество – экологически чистый и очень привлекательный источник энергии, но преобразовывать другие энергоресурсы в электроэнергию без значительных затрат человечество пока не научилось, как не научилось и запасать в достаточном объеме эту энергию впрок. Даже самый современный аккумулятор электрической энергии способен обеспечить работу автомобиля лишь в течение нескольких десятков километров пробега. Этого для удовлетворения возрастающих автотранспортных нужд, конечно же, недостаточно.

Привлекательным источником энергии является ядерная (атомная) энергия. Но на современном этапе развития технологий преобразования этого колоссального источника энергии в легкодоступные для практического использования виды говорить очень и очень рано.

По этим причинам в ближайшем будущем достойной замены нефтепродуктам, как основным источникам энергии для автомобильных двигателей, не предвидится.

В настоящее время определено несколько путей снижения токсичности выхлопных газов, выделяемых автомобилями и другой техникой, использующих тепловые двигатели, работающие на нефтяном топливе.
Основные направления снижения содержания вредных веществ в отработавших газах:

  • совершенствование процессов сгорания топлива;
  • повышение качества топлива;
  • применение различных способов очистки отработавших газов от токсичных и вредных компонентов.

Полнота сгорания топлива

Совершенствование процессов сгорания топлива выгодно не только с точки зрения экологии, но и экономичности. Полностью сгоревшее топливо отдает максимум тепловой энергии для работы двигателя и выделяет в отходы значительно меньше вредных веществ, чем топливо, сгоревшее частично.

Совершенствование процессов горения топлива связано с решением многих задач – улучшение смесеобразования, повышение эффективности работы газораспределительного механизма, систем питания и зажигания двигателя.

В последние годы значительную долю этих задач конструкторы решают внедрением компьютерных технологий в процессы управления работой двигателя. Управляемые электроникой системы впрыска и зажигания, безусловно, способствуют повышению качества сгорания горючей смеси, и, конечно же, это благотворно сказывается на экологичности тепловых двигателей.

Повышение качества топлива

Повышение качества используемого для работы двигателей топлива, безусловно, имеет колоссальное значение для улучшения эклогичности автотранспорта. В любом топливе, используемом для извлечения тепловой энергии, лишь два химических элемента представляют энергетическую ценность – водород и углерод. Первый при окислении образует воду, второй – либо оксид углерода (при неполном сгорании), либо двуокись углерода (при полном сгорании).
При идеально отлаженной системе питания и зажигания эти два элемента сгорают полностью и отдают двигателю необходимую для его работы теплоту. Но идеального ничего не бывает, поэтому в выхлопных газах, как правило, присутствует некоторое количество оксида углерода, который в быту называют угарным газом.

Любое топливо, в том числе и получаемое из нефтепродуктов, содержит посторонние примеси, химические вещества и элементы в связанном или свободном состоянии. Безусловно, они тоже участвуют в процессах горения, образуя различные окислы, зачастую очень токсичные.
К таковым относятся, в первую очередь различные соединения серы и азота. Выделяя малое количество теплоты, эти вещества значительно обогащают отработавшие газы вредными примесями, т. е. являются крайне нежелательным топливным балластом.

Поэтому повышение качества топлива напрямую связано с его очисткой от механических, сернистых и азотных примесей в процессе переработки нефти. Очень выгодным в этом плане является применение газообразного топлива для двигателей, поскольку в нефтяных и природных газах посторонних примесей существенно меньше, что положительно сказывается на экологичности отходов сгорания.

Нейтрализация отработавших газов

Для очистки продуктов сгорания от токсичных и вредных веществ на двигателях, использующих в качестве топлива бензин, применяют системы нейтрализации отработавших газов вместе с системой их рециркуляции и системой улавливания паров топлива.

Основным элементом в системе нейтрализации отработавших газов является каталитический нейтрализатор, устанавливаемый в выпускной системе автомобильного двигателя.

Нейтрализатор внешне похож на обычный резонатор и часто устанавливается вместо него. Он представляет собой химический реактор с катализатором – веществом, активизирующим протекание реакций превращения одних веществ в другие.
Главными элементами каталитического нейтрализатора являются один или два каталитических сотовых блока, представляющие собой керамические или листовые гофрированные металлические цилиндры с множеством продольных каналов. На поверхность этих каналов (сот блока) нанесен пористый каталитический состав, содержащий благородные металлы (платина, палладий, родий).
Каталитический блок помещается в корпус из жаростойкой и коррозионно-стойкой стали.

Все современные нейтрализаторы являются трехкомпонентными, т. е. предназначенными для снижения выброса трех основных токсичных компонентов отработавших газов и сочетают в себе сразу две химические функции: окислительную и восстановительную.
Нейтрализатор одновременно дожигает (окисляет) не полностью сгоревшие частички топлива и продукты его неполного сгорания (в первую очередь - оксид углерода), а также восстанавливает очень ядовитые оксиды азота, разлагая их на исходные составляющие – азот и кислород.

уменьшение токсичности отработавших газов

При использовании каталитического нейтрализатора нельзя применять этилированный бензин, поскольку содержащийся в нем свинец, осаждаясь на внутренних поверхностях выпускной системы, нарушает газовую проницаемость микропор активного каталитического слоя.
В результате отработавшие газы свободно выходят в атмосферу, не соприкоснувшись с активной поверхностью катализатора.

Нейтрализатор отработавших газов начинает эффективно работать при температуре не менее 300 ˚С, при этом он начинает дополнительно разогреваться в результате происходящих в нем химических процессов. Важно так разместить нейтрализатор в системе выпуска отработавших газов, чтобы его температура во время работы не превышала 900…950 ˚С, иначе возможно разрушение каталитического слоя, сот и даже корпуса нейтрализатора.
В этом случае сгоревший нейтрализатор не только перестает выполнять свою функцию, но и существенно снижает мощность двигателя, оказывая сопротивление выпуску отработавших газов, и ухудшая тем самым наполняемость цилиндров свежим зарядом.

Особенно велика вероятность повреждения нейтрализатора при отказе в работе одного из цилиндров двигателя. При этом несгоревшая в цилиндре горючая смесь загорается в нейтрализаторе, интенсивно разогревая и сжигая активную каталитическую поверхность его сот.

Для обеспечения эффективной работы нейтрализатора отработавших газов и точного дозирования топлива, подаваемого в цилиндры двигателя, используется лямбда-зонд, или кислородный датчик, который отслеживает состав выхлопных газов и корректирует посредством электронного блока управления количество подаваемого в цилиндры топлива.

Снижение токсичности отработавших газов

Методы, используемые для снижения токсичности отработавших газов двигателей с искровым зажиганием, делятся на две основные категории: конструктивные методы и очистка отработавших газов. Основные промышленно развитые страны стремятся внедрить у себя (или уже приняли) строгие нормы предельной токсичности отработавших газов. Выполнение этих норм требует использования систем снижения токсичности, включающих трехкомпонентный каталитический нейтрализатор, который уже доказал свою эффективность в США, Европе и Японии

Снижение токсичности методом дозирования топлива

Рабочая смесь, качество которой определяется коэффициентом избытка воздуха λ, оказывает решающее влияние на состав отработавших газов.

Двигатель обеспечивает получение максимального крутящего момента при λ = 0,9 – эта величина обычно программируется для режима полной нагрузки двигателя. Оптимальная топливная экономичность достигается при смесях, характеризующихся λ = 1,1. Это совпадает с возможностью получения низких выбросов CO и CH. Однако выбросы оксидов азота (NOx) при этом оказываются максимальными. Коэффициент избытка воздуха λ = 0,9 … 1,05 выбирается для режима холостого хода двигателя.

Слишком обедненная смесь приводит к появлению пропусков воспламенения, а так как смесь постепенно обедняется и далее, это влечет за собой быстрое увеличение выбросов СН.

Для предотвращения работы двигателя на сверхвысоких оборотах, когда требуется постоянное использование богатой смеси, осуществляется полное прекращение подачи топлива к двигателю.

Системы впрыска топлива позволяют добиться более точного контроля за составом смеси и значительно снизить количество выбросов отработавших газов.

Снижение токсичности отработавших газов точным смесеобразованием

Однородность смеси, ее послойное распределение и температура в зоне свечи являются основными факторами при определении способности смеси к воспламенению и последующему сгоранию с соответствующим влиянием на состав отработавших газов.

Однородные смеси и регулируемое послойное смесеобразование (богатая смесь у свечи зажигания и бедная смесь вблизи стенок камеры сгорания) представляют два пути совершенствования процесса смесеобразования.

На двигателях с одноточечным впрыском топлива для предотвращения отложения пленки топлива на стенках впускного трубопровода используется предварительный нагрев воздуха и впускного трубопровода.

Равномерное распределение

Максимальный коэффициент полезного действия (к.п.д.) двигателя может быть достигнут только при одинаковом коэффициенте избытка воздуха в каждом цилиндре.

Рециркуляция отработавших газов как способ снижения токсичности отработавших газов

Отработавшие газы направляются обратно в камеру сгорания для снижения максимальной температуры сгорания с целью снижения образования NOx. Оптимизация системы EGR может также приводить к снижению расхода топлива. Система EGR используется любым из двух способов:

— внутренней рециркуляцией отработавших газов, обеспечиваемой соответствующей установкой фаз газораспределения (перекрытия клапанов);

— внешней рециркуляцией отработавших газов с применением управляемых клапанов.

Изменение фаз газораспределения

Большой угол перекрытия клапанов (при раннем открытии впускного клапана) позволяет увеличить внутреннюю рециркуляцию отработавших газов и поэтому может помочь в снижении выбросов NOx. Однако, так как рециркулирующие отработавшие газы вытесняют свежую топливовоздушную смесь, то раннее открытие впускного клапана также ведет к уменьшению максимального крутящего момента. Кроме того, чрезмерная рециркуляция отработавших газов, особенно при работе двигателя на холостом ходу, может стать причиной перебоев в зажигании, что, в свою очередь, приводит к увеличению выбросов углеводородов (НС). Оптимальным решением является применение изменяемых фаз газораспределения, когда фазы газораспределения варьируются для оптимального приспосабливания процесса сгорания к условиям работы двигателя.

Влияние степени сжатия на количество токсичных компонентов отработавших газов

Ранее считалось, что повышение термического коэффициента полезного действия (к.п.д.) путем роста степени сжатия представляется эффективным мероприятием для улучшения топливной экономичности. Однако при этом одновременно увеличивается и максимальная температура сгорания, которая вызывает более высокую концентрацию выбросов NOx.

Конструкция камеры сгорания

Снижение выбросов CH обеспечивается компактной камерой сгорания, имеющей минимальную площадь поверхности с отсутствием выемок. Центральное расположение свечи зажигания обеспечивает короткий путь распространения пламени, позволяя получить быстрое и относительно полное сгорание рабочей смеси, что приводит, кроме низких выбросов CH, к пониженному расходу топлива. Турбулизация рабочей смеси в камере сгорания обеспечивает более быстрое сгорание. Кроме создания двигателей, способных работать на обедненных смесях, оптимизация формы камеры сгорания дает возможность снизить концентрацию CH при λ = 1.

Создания вихревого движения смеси во впускном канале и оптимизация формы камеры сгорания позволяют использовать переобедненные рабочие смеси (λ = 1,4…1,6). Такие двигатели характеризуются низкой токсичностью и очень хорошей экономичностью, они не нуждаются в каталитической очистке отработавших газов. Разработки в области снижения выбросов NOx у двигателей, работающих на переобедненных смесях, еще находятся в начальной стадии. Такие двигатели вплоть до настоящего времени с успехом применялись в Европе и Японии. Имелось только несколько моделей, использующих концепцию обедненных смесей, когда достигался компромисс между токсичностью отработавших газов и расходом топлива.

Система зажигания автомобилей

Конструкция свечи зажигания, ее положение в камере сгорания, а также энергия и продолжительность искрового разряда – все эти параметры оказывают существенное влияние на воспламенение смеси, продолжительность ее сгорания, а поэтому и на токсичность компонентов отработавших газов. Важность этих факторов возрастает в прямой зависимости от обеднения смеси (λ > 1,1). Установка момента зажигания оказывает решающее влияние как на токсичность, так и на расход топлива. При выборе момента зажигания приходится (иногда в ущерб расходу топлива) для снижения выбросов CH и NOx выбирать более поздние углы опережения зажигания. Вместе с подачей в избытке кислорода это поднимает температуру в выпускной системе и позволяет дожигать СО и СН.

Этот метод приводит к снижению выбросов NOx и несгоревших углеводородов, но за счет увеличенного расхода топлива. С другой стороны, если выбирается слишком большое опережение зажигания, это приводит к увеличению расхода топлива и выбросов NOx и СН.

Вентиляция картера двигателя

Концентрация углеводородов в картере двигателя может во много раз превышать регистрируемую в отработавших газах. Система регулирования вентиляции картера перепускает картерные газы во впускной тракт двигателя, откуда они попадают в камеру сгорания для дожигания. Раньше эти газы выпускались неочищенными непосредственно в атмосферу; сейчас наличие системы снижения токсичности картерных газов является обязательным требованием.

Читайте также: