В чем особенность двухфазной синхронной машины н. теслы?

Обновлено: 07.07.2024

Передача энергии

В конце XIX века электрические двигатели постоянного тока приобретали всё большую популярность в промышленном производстве. Но уже в те годы зачастую возникала ситуация, когда крупные электростанции (особенно ГЭС) располагались за сотни километров от потребителей. И перед электротехниками остро встал вопрос о передаче электрической энергии на большие расстояния с минимальными потерями.

Было установлено, что потери в линии можно уменьшить за счёт увеличения сечения провода либо повышения напряжения. Первые проекты по применению провода большого сечения показали, что этот путь экономически невыгодный и фактически труднореализуемый. Так, в 1876 г. немецкий промышленник Вернер Сименс, посетив Ниагарский водопад, высоко оценил возможности его использования в энергетике. Но, по расчётам Сименса, для передачи энергии от водопада на расстояние 50 км требовалась линия с медным проводом, который должен иметь диаметр не менее 75 мм. Конечно, позволить себе потратить столько недешёвой меди промышленники не могли.

Работая над этой проблемой, к середине 1880-х годов электротехники установили, что легче изготовить высоковольтный генератор переменного напряжения, чем постоянного. Более того, необходимое для экономичной передачи высокое напряжение имеет смысл получать даже не в самой динамо-машине, а с помощью отдельного повышающего трансформатора (изобретённого в 1876 г. русским инженером П. Н. Яблочковым), что значительно проще и эффективнее. При этом на конце линии электропередачи устанавливался понижающий трансформатор. Однако в этом случае возникала необходимость в применении выпрямителей для преобразования переменного тока в постоянный, которые по тем временам были непростыми и обладали большими потерям. Так возникла насущная потребность в изобретении двигателя, способного работать на переменном токе.

Тесла и Феррарис

За работу по созданию такого двигателя одновременно принялись изобретатели со всего мира. Опыты Бейли (1879 г.), Марселя Депре (1883 г.), Бредли (1887 г.), Ф. Хазельвандера (1887 г.) и многих других изобретателей были интересны, но ни один из них не мог удовлетворить нужды промышленности: электродвигатели получались либо громоздкими и неэкономичными, либо сложными и ненадёжными.



Двухфазный электродвигатель Теслы

В 1888 г. произошёл долгожданный научный прорыв: независимо друг от друга сербский физик-изобретатель Никола Тесла и итальянский физик Галилео Феррарис научно описали явление вращающегося электромагнитного поля в современном его понимании. Однако Феррарис в своём докладе сделал ошибочный вывод о нецелесообразности применения переменных многофазных токов, главным образом из-за низкого КПД электрических установок (по его расчётам, не более 50%), и не стал продолжать исследования в этом направлении, тогда как Тесла видел будущее электротехники именно за переменным током.

В том же 1888 г. Тесла, исходя из принципа вращения магнитного поля, создал сложную систему, состоявшуюся из генератора, линии проводной связи и самого двигателя переменного тока. Стоит отметить, что еще в 1887 г. Тесла теоретически описал все возможные случаи сдвига фаз и получил патент на многофазные электрические машины с вращающимися полями. В своих опытах он остановился на двухфазном варианте со сдвигом фаз 90°, но обрисовал возможность внедрения машин и с большим числом фаз. Кроме того, Тесла также получил патенты на системы передачи электроэнергии посредством многофазного переменного тока.

Уже в июне 1888 г. компания Westinghouse Electric купила у него за миллион долларов все патенты на двухфазную систему и предложила организовать на своих заводах выпуск асинхронных двигателей. Эти двигатели по сравнению с ранее созданными были более надёжными и эффективными, но, тем не менее, имели и значительные недостатки. Выступающие полюса статора с сосредоточенной обмоткой, большое магнитное сопротивление, необходимость использования четырёх проводов – всё это ухудшало характеристики машины и удорожало сооружение линий электропередачи. Неудачным оказался и выбор двухфазной системы, хотя сам Тесла считал её оптимальной среди всех возможных многофазных систем.

Две фазы или три?

Двухфазные асинхронные двигатели и электрогенераторы Теслы, несмотря на ряд недостатков, получили достаточно широкое распространение в США. В 1895 г. на основе двухфазных генераторов и двухфазной системы электропередачи была построена Ниагарская ГЭС, которая на тот момент была крупнейшей в мире (её мощность составляла 50 тыс. л. с.). Однако со временем из экономических и технических соображений американцы полностью заменили двухфазные системы на трёхфазные, наибольшая заслуга в разработке которых среди учёных и инженеров разных стран принадлежит русскому электротехнику Михаилу Осиповичу Доливо-Добровольскому.



Трёхфазный электродвигатель Доливо-Добровольского

М. О. Доливо-Добровольский в своих разработках взял за основу двигатель Теслы и усовершенствовал его, используя вместо двух обмоток три сдвинутые на 120° обмотки переменного тока. В 1888 г. он построил свой первый трёхфазный генератор переменного тока мощностью около 3 кВт, от которого привёл в действие трёхфазный двигатель со статором в виде кольца Грамма и ротором в виде сплошного медного цилиндра.

Меньше проводов

Исследуя свойства трёхфазной системы, Михаил Осипович доказал, что в любой момент времени сумма токов системы равна нулю (при исправном оборудовании. – Прим. ред.), и поэтому для передачи энергии к электродвигателю достаточно трёх проводов, что позволяло при прочих равных условиях экономить четверть меди по сравнению с двухфазной цепью. Одновременно М. О. Доливо-Добровольский исследовал соединения звездой и треугольником, экспериментировал с токами различных напряжений и с машинами, имеющими разное число пар полюсов, разработал все элементы классических трёхфазных цепей переменного тока: трёхфазные трансформаторы, пусковые реостаты, измерительные приборы, схемы включения генераторов и двигателей звездой и треугольником.

По своим техническим показателям электродвигатели Доливо-Добровольского превосходили все существовавшие тогда электромоторы и были настолько удачны, что практически не претерпели существенных изменений до настоящего момента.

Под ред. И.А. Глебова

История электротехники - i_001.jpg

Электротехника является важнейшей отраслью науки и техники. Электротехническая продукция широко используется в промышленности и сельском хозяйстве, на транспорте, в медицине и бытовой технике. Изучение и использование электрических и магнитных явлений, передач электроэнергии, электрических машин, аппаратов и устройств, электрического освещения, силовой электроники, электротермии, электрохимии происходило на протяжении более двух столетий и связано с деятельностью многих поколений выдающихся ученых, которая сопровождалась развитием теории, многочисленными открытиями, изобретениями и созданием все более совершенных электротехнологий.

Таким образом русским ученым удалось внести большой творческий вклад уже в начальную стадию развития электротехники. Работы этого времени в нашей стране и за рубежом получили достаточно полное освещение в настоящей книге.

По мере накопления и углубления знаний в области электротехники появилась необходимость их практической реализации. Создание и развитие электротехнических производств требовало со своей стороны новых идей, конструкций и производственных процессов. Все это привело к увеличению количества электротехнических заводов, особенно в конце предыдущего и начале текущего столетия. Это прежде всего относится к Западной Европе и США. В России, как слаборазвитой в промышленном отношении стране, создавались главным образом филиалы западно-европейских фирм. Положение коренным образом изменилось, когда в 1921 г. был принят план Государственной электрификации России (ГОЭЛРО). В его составлении участвовали видные электротехники страны: К.А. Круг, М.А. Шателен, А.А. Горев, B.C. Кулебакин, А.Н. Ларионов, А.А. Глазунов и др. Все работы велись под руководством Г.М. Кржижановского.

Дальнейшее развитие электротехники в предвоенные и послевоенные годы привело к образованию крупной экономической структуры — Министерства электротехнической промышленности.

В трудных экономических условиях, переживаемых Россией в настоящее время, для подъема промышленного производства и выпуска конкурентоспособной продукции на внутреннем и внешнем рынках необходимо развитие существующих и создание новых крупных экономических структур с научно-исследовательскими институтами и проектно-конструкторскими организациями, а также коренное улучшение научной деятельности в институтах Российской академии наук и крупнейших высших учебных заведениях России. Особое значение приобретает проблема подготовки инженерных и научных кадров.

Бурное развитие электротехники в XX в. обусловлено творческой деятельностью очень большого числа специалистов. Тем не менее следует выделить среди них тех, кто внес решающий вклад в создание и развитие теории, разработку методов расчета и проектирования, новые виды производственных процессов и инженерную деятельность непосредственно на производстве.

Авторами данной книги дано последовательное изложение истории создания новых видов электротехнических изделий в мире на протяжении почти двух столетий и особенно в последнюю половину текущего столетия в связи с быстрым развитием электротехники в это время. Наряду с этим показаны конкретные творческие достижения выдающихся ученых, инженеров и специалистов производства во всем мире и особенно в России.

Академия электротехнических наук планирует в дальнейшем издание электротехнической энциклопедии.

Глава 1 — Я.А. Шнейберг

Глава 2 — О.Н. Веселовский, Я.А. Шнейберг

Глава 3 — О.Н. Веселовский, Я.А. Шнейберг

Глава 4 — К.С. Демирчян, В.Г. Миронов

Глава 5 — В.А. Баринов, И.М. Бортник, В.П. Васин, А.А. Глазунов, А.Ф. Дьяков, В.Д. Ковалев, В.В. Кривенков, И.П. Кужекин, В.П. Ларионов, А.К. Лоханин, РА. Лытаев, Б.К. Максимов, А.К. Михайлов, Н.И. Овчаренко, Ю.П. Рыжов, В.А. Семенов, В.А. Старшинов, Н.Н. Тиходеев, В.В. Худяков, В.В. Шматович

Конец XIX в. отмечен появлением многофазных систем передачи и распределения электроэнергии на базе синхронных генераторов и асинхронных двигателей, предложенных великим изобретателем Николой Тесла, который также исследовал беспроводные методы передачи энергии и информации.

Почти весь XIX век в практических применениях безраздельно господствовал постоянный ток. Главным препятствием широкой электрификации в то время была невозможность передачи электроэнергии на большие расстояния, а переходу на переменные токи мешало отсутствие эффективных электродвигателей переменного тока. Решение было найдено в новаторских работах гениального электротехника Николы Тесла.

Причин популярности постоянного тока тогда было несколько. Прежде всего, источниками тока служили гальванические батареи, и все производимые генераторы и моторы также были постоянного тока. Инженеры мыслили электрогидравлическими аналогиями, в которые не укладывалась идея потоков, меняющих свое направление, поэтому, например, приверженность Эдисона постоянным токам казалась вполне оправданной. Между тем недостатки устройств постоянного тока становились все более очевидными в связи с плохой работой коллектора электрических машин (искрением и износом), проблемами освещения и, главное, невозможностью передачи электроэнергии на большие расстояния.

Освещение по системе Эдисона имело низкое напряжение, 110 В, поэтому в каждом районе требовалось строить свою электростанцию. Например, в Петербурге из-за дороговизны земли такие электростанции ставились на баржах, стоящих в реках Мойке и Фонтанке [2]. Было ясно, что крупные генерирующие станции выгоднее строить вблизи рек и угольных бассейнов, вдали от городов. Но тогда для дальней передачи нужно или увеличивать сечение подводящих проводов, или повышать напряжение. Для проверки первого подхода на практике русский изобретатель Федор Апполонович Пироцкий предлагал использовать железнодорожные рельсы. Второй путь (повышение напряжения) был испробован французским инженером, впоследствии академиком Марселем Депре (Marcel Deprez), построившим несколько линий передачи постоянного тока с напряжением до 6 кВ. Первая из них, с напряжением 2 кВ, имела длину 57 км и питала двигатель постоянного тока с насосом для искусственного водопада на Мюнхенской электротехнической выставке 1882 г. [2, 4]. Однако для систем освещения такое высокое напряжение было непригодно.


Бог проявил щедрость,
когда подарил миру такого человека.

Светлане Плачковой посвящается

Издание посвящается жене, другу и соратнику, автору идеи, инициатору и организатору написания этих книг Светлане Григорьевне Плачковой, что явилось её последним вкладом в свою любимую отрасль – энергетику.

Книга 2. Познание и опыт - путь к современной энергетике

9.3. Электродвигатели переменного тока

Поскольку направление вращения электродвигателя не зависит от направления доставляемого ему тока, то каждый электродвигатель можно приводить в движение и переменным током. Однако в этом случае значительно уменьшается его мощность. Причина этого заключается в том, что переменный ток, проходя по обмотке электромагнитов, создает в сплошных сердечниках так называемые токи Фуко, на образование которых уходит значительная часть доставляемой к двигателю электрической энергии. Кроме того, у двигателей постоянного тока энергия возбуждения электромагнитов расходуется только один раз в начале действия, после чего намагничивание сердечников остается неизменным. В двигателе же переменного тока сердечники перемагничиваются при каждой перемене направления тока, на что затрачивается часть энергии. Уменьшить потери от токов Фуко пытались, делая сердечник не сплошным, а состоящим из отдельных изолированных друг от друга металлических полос. Однако это не дало приемлемого результата, а практическое применение поначалу получили лишь синхронные двигатели переменного тока.

Тем не менее, таким синхронным двигателям переменного тока присущ тот недостаток, что синхронность хода должна быть установлена до принятия нагрузки, после чего двигатель готов начать работу. При значительных перегрузках синхронность хода нарушалась, вплоть до полной остановки двигателя, что весьма ограничивало область его применения.

В 1870 г. была разработана конструкция асинхронных двигателей переменного тока, лишенных вышеуказанного недостатка. Появление такого двигателя, еще называемого индукционным, позволило при наличии систем распределения и трансформации переменного тока необыкновенно расширить сферу практического применения электрической энергии. В очень упрощенном виде принцип действия индукционных двигателей переменного тока основан на эффекте возникновения вращающегося магнитного поля, получаемого от действия двух переменных токов, сдвинутых по фазе на 1/4 часть периода (рис. 9.25).

К открытию эффекта вращающегося магнитного поля в современном его понимании пришли независимо друг от друга итальянский ученый Галилео Феррарис и сербский ученый и изобретатель Николо Тесла. Способ получения вращающегося магнитного поля Феррарис нашел в 1885 году, а впервые сообщил о своем открытии в докладе Туринской академии наук в марте 1888 года. Двумя месяцами позже, в мае того же года, с изложением существа своих открытий в Американском институте инженеров-электриков выступил Тесла, хотя идея бесколлекторного электродвигателя переменного тока у него появилась ещё в 1882 году.


Николо Тесла (1856–1943) родился 10 июля 1856 года в селе Смиляны (ранее Австро-Венгрия, теперь Хорватия). В 1878 году окончил Политехнический институт в Граце и в 1880 году – Пражский университет. Работал инженером в Будапеште и Париже. Уехав в 1884 году в Нью-Йорк, Тесла организовал лабораторию и в 1888 году, исходя из принципа вращающегося магнитного поля, построил двухфазные генератор и электродвигатель переменного тока. В 1891 году сконструировал резонансный трансформатор трансформатор Тесла), позволяющий получать высокочастотные колебания напряжения, и первым указал на физиологическое воздействие токов высокой частоты. Он исследовал возможность беспроволочной передачи сигналов и энергии на значительные расстояния. В 1899 году публично продемонстрировал лампы и двигатели, работающие на высокочастотном токе без проводов. Построил радиостанцию в Колорадо и радиоантенну в Лонг-Айленде. Именем Теслы названа единица измерения плотности магнитного потока (магнитной индукции).

Рис. 9.25. Эффект возникновения вращающегося магнитного поля от действия двух переменных токов, сдвинутых по фазе на 1/4 часть периода

Недостатком электродвигателей Тесла было то, что они имели большое магнитное сопротивление и крайне неблагоприятное распределение намагничивающей силы вдоль воздушного зазора, что приводило к ухудшению характеристик машины. Неудачным оказался и выбор двухфазной системы токов из всех возможных многофазных систем. Встретившиеся экономические и технические трудности задерживали внедрение двухфазной системы в практику.

Рис. 9.26. Асинхронный электродвигатель переменного тока конструкции Тесла

Рис. 9.27. Двигатель трехфазного переменного тока мощностью в 100 л.с. конструкции Доливо-Добровольского

Рис. 9.28. Отделение электродвигателей переменного тока на заводе Шуккерта в Нюрнберге

Рис. 9.28. Отделение электродвигателей переменного тока на заводе Шуккерта в Нюрнберге

Более совершенной электрической системой оказалась трехфазная. Наибольшая заслуга среди ученых и инженеров разных стран (немец Ф. Хазельвандер, француз М. Депре, американец Ч. Бредли) принадлежит русскому электротехнику Михаилу Осиповичу ДоливоДобровольскому, сумевшему придать своим работам практический характер, создавшему трехфазные асинхронные двигатели, трансформаторы, разработавшему четырехи трехпроводную цепи. Его по праву считают основоположником трехфазных систем.

Одновременно М.О. Доливо-Добровольский исследовал соединения звездой и треугольником, экспериментировал с токами различных напряжений и с машинами, имеющими разное число пар полюсов, разработал все элементы трехфазных цепей переменного тока: трансформаторы трехфазного тока (1890), пусковые реостаты, измерительные приборы, схемы включения генераторов и двигателей звездой и треугольником.

На рис. 9.28 приведен общий вид цеха по производству электродвигателей переменного тока на заводе Шуккерта в Нюрнберге. С изобретением трехфазной системы переменного тока такие электродвигатели в дальнейшем получили массовое распространение во всем мире.

Электродвигатели для сетей переменного тока прошли во второй половине XIX века путь от однофазного синхронного двигателя Уитстона до асинхронных двигателей, созданных Теслой на основе концепции вращающегося магнитного поля, математически сформулированной Феррарисом.

В предыдущих статьях [ 1 , 2 ] описывались первые электрические двигатели с питанием от гальванических батарей. Однако во второй половине XIX века в связи с развитием электрического освещения и дальней передачи электроэнергии появились сети однофазного переменного тока [ 3 ]. Это и дало толчок к изобретению электродвигателей переменного тока.

Первый однофазный двигатель был предложен в 1841 г. английским физиком Чарльзом Уитстоном (Charles Wheatstone), известным также своими изобретениями в области электрогенераторов и измерительной техники. Такой двигатель подключается к источнику переменного тока и содержит (рис. 1) статор с шестью электромагнитами (1) и ротор (2) в виде медного диска с тремя подково­образными магнитами (3) полярностью N и S .

Все электромагниты включены последовательно так, что при любой полярности питающего напряжения в промежутках между ними формируются магнитные потоки или полюса чередующейся полярности n и s , показанные на рис. 1 в начальный момент времени t 1 для положительного полупериода питающего напряжения. Предположим, что ротор вращается против часовой стрелки, и рассмотрим силы, действующие на верхний магнит ротора (аналогично работают и остальные магниты). Поскольку разноименные полюса магнитов притягиваются, а одноименные отталкиваются, вращающий момент ротора будет направлен против часовой стрелки, поддерживая его вращение. Если ротор двигателя успеет за полупериод напряжения повернуться на 60°, то в следующий полупериод все полюса статора поменяют полярность и ротор повернется еще на 60°. Таким образом, ротор будет поворачиваться синхронно с частотой перемагничивания электромагнитов (частотой сети), отчего подобные двигатели по предложению Чарльза Штейнмеца и получили название синхронных.

Магнитное поле статора такого двигателя можно изобразить в виде вектора (рис. 2), где Ф1, Ф2,… Ф6 — магнитные потоки статора, взаимодействующие с ротором в последовательные моменты времени t 1, t 2, … t 6, когда питающее напряжение меняет свой знак. Получается, что вектор магнитного потока статора шагает по окружности синхронно с ротором, поэтому такое магнитное поле можно назвать шагающим.

Универсальные двигатели до сих пор широко применяются при мощности до нескольких киловатт, особенно в бытовой технике. Они привлекают производителей легкостью изменения скорости с помощью регулирования напряжения, как в обычном двигателе постоянного тока. Однако для мощных приводов такое регулирование было в то время затруднительным. Поэтому для электрической тяги на железных дорогах и в лифтах с питанием от сети переменного тока стали применять так называемый репульсионный двигатель, изобретенный в 1885 г. знаменитым американским электротехником Илайю Томсоном (Elihu Thomson) и усовершенствованный позднее Микша Дери [3, 5, 6].

Илайю Томсон (1853–1937), родом из Англии, соединял в себе таланты блестящего университетского профессора, крупного инженера, плодовитого изобретателя (696 патентов) и успешного предпринимателя [7]. Он разработал различные системы электрического освещения, высокочастотные генератор и трансформатор, самопишущий ваттметр, один из способов электросварки, а также, например, улучшил рентгеновские трубки. Томсон основал электротехнические компании в Англии, Франции и США. В 1892 г. его компания Thomson–Houston слилась с компанией Эдисона, образовав крупнейшую электротехническую компанию мира — General Electric.

По конструкции репульсионный двигатель, схема которого показана на рис. 4, похож на универсальный двигатель с якорем (1) и возбуждением в виде электромагнита (2). Отличие состоит в том, что щетки двигателя (3) закорочены и могут вручную поворачиваться [8]. При питании переменным напряжением в закороченной обмотке якоря наводится ЭДС и идет ток, направление которого, в соответствии с законом Ленца, таково, что создаваемый им поток противодействует магнитному потоку статора.

Диск (1) из меди или стали на стеклянной пластине (2) вращался в том же направлении, что и вращающийся магнит (3). Объяснение этому загадочному явлению нашел Майкл Фарадей в 1831 г. после открытия закона электромагнитной индукции (закона Фарадея). Согласно ему, вращающееся магнитное поле магнита индуцирует в диске вихревые токи, создающие собственное магнитное поле, взаимодействующее с вращающимся.

Этот принцип и лежит в основе современных асинхронных двигателей (в английской литературе — индукционных), имеющих металлический ротор и отличающихся только тем, что в них вращающееся магнитное поле образуется неподвижной обмоткой статора. Первый шаг к созданию такого двигателя был сделан английским физиком Уолтером Бейли (Walter Bailey) в 1879 г., заменившим в опыте Араго вращающийся магнит на четыре электромагнита (2–5), токи в которых переключались последовательно вручную (рис. 7) [5, 10]. Но такое устройство создавало шагающее через 90o магнитное поле. А как получить непрерывно (равномерно) вращающееся магнитное поле?

На этот вопрос ответил вышеупомянутый Феррарис в 1888 г. в докладе Туринской академии наук, математически сформулировав два условия [5, 10]:

  • Обмотка двигателя должна содержать две независимые части (называемые теперь фазами), магнитные потоки которых геометрически взаимно перпендикулярны.
  • Фазы должны быть запитаны двумя гармоническими напряжениями, сдвинутыми на четверть периода (синус и косинус).

Свою теорию Феррарис блестяще подтвердил макетом двигателя мощностью 3 Вт (рис. 8), имеющего ротор (1) в виде полого медного стаканчика и статор (2) с фазами A и B. Фазы разделены на две секции с разным числом витков, намотанных проводом разного диаметра так, чтобы создавать индуктивный сдвиг фаз токов в 90° при питании от однофазной сети.

В 1890 г. французские инженеры Морис Хитин (Maurice Hutin) и Морис Леблан (Maurice Leblanc) предложили использовать для сдвига фаз токов конденсатор [6]. В таком виде двухфазный двигатель дожил до наших дней под названием конденсаторного двигателя. При этом габариты конденсатора соизмеримы с размерами самого двигателя, поэтому данное техническое решение пригодно только для маломощных двигателей.

Совершенно по другому пути пошел Тесла, предложив в 1887 г. многофазные системы, где сдвинутые напряжения питания фаз вырабатывались питающим генератором, как показано, например, на рис. 9, где: 1 — генератор, 2 — двухфазный двигатель, 3 — контактные кольца генератора, 4 — обмотка ротора (кольца двигателя не показаны) [5, 10].

При положении переключателя ON ротор запитывается постоянным напряжением, и это двухфазный синхронный двигатель с электромагнитным возбуждением. В положении OFF обмотка ротора закорачивается, и получается асинхронный двигатель, названный Теслой индукционным. Эксперт патентного ведомства поначалу не поверил в работоспособность такого странного двигателя, пока Тесла не продемонстрировал ему действующий макет (рис. 10).

Двигатели Теслы и Феррариса легко запускались от питающей сети, однако с увеличением нагрузки их скорость падала, что подтверждается принципиальным отличием асинхронного двигателя от синхронного. Действительно, асинхронный двигатель развивает вращающий момент лишь при наличии тока, а следовательно, и ЭДС, индуцируемой в роторе. А, по закону Фарадея, это возможно лишь тогда, когда ротор пересекает силовые линии поля статора, т. е. когда скорости их вращения не одинаковы (не синхронны).

Как описано в статье [ 3 ], Тесла вместе с Вестингаузом начали активно внедрять асинхронные двигатели в жизнь, однако они были доведены до совершенства и приняли современный вид лишь благодаря трудам нашего соотечественника Михаила Осиповича Доливо-Добровольского, которые будут рассмотрены в следующих статьях.

Что касается многофазных синхронных двигателей, то они нашли широкое применение там, где требуется стабильная скорость вращения, например в компрессорах, приводах генераторов и т. д. Синхронные двигатели с постоянными магнитами входят в состав современных вентильных двигателей, создающих все большую конкуренцию пока еще наиболее распространенным электродвигателям постоянного тока.

Читайте также: