Схема эбу дизельного двигателя

Добавил пользователь Алексей Ф.
Обновлено: 20.09.2024

В этой небльшой статье рассмотри ваются в упрощенном виде принципы и схем а работы Электронного Блока Управления (ЭБУ) дизельных двигателей с ТНВД типа VP37. Основн ая функция ЭБУ — обрабатывать данные с датчиков и посылать сигналы на элементы управления. Датчики и элементы управления перечислены в следующей таблице, датчики выделены синим цветом, а элементы упраления — зеленым .

Сигнал от ключа зажигания

Датчик положения педали

Датчик положения ХХ

Регулятор цикловой подачи

Клапан отсечки топлива

Датчик темпереатуры топлива

Клапан опережения впрыска

Датчик хода иглы форсунки

Датчик положения КВ

Клапан рециркуляции ОГ

Клапан ограничения давления

Воздушная заслонка (AXG)

Датчик температуры ОЖ

Кроме перечисленных выше на работу ЭБУ также оказывают влияние датчик скорости G22, выключатели пед а лей тормоза F47 и сцепления F36.

Работа ЭБУ достаточно сложна. С одной стороны, можно сказать, что на сигналы выдаваемые на каждый элемент управления оказывают влияние данные принимаемые со всех датчиков. Но с другой, из перечисленного выше можно выделить несколько подсистем, основные алгоритмы работы которых замкнуты на себя. Общим у этих подсистем является то что ЭБУ выдает некалиброванный сигнал с широтно-импульсной модуляцией (ШИМ) на сильноточный элемент управления и корректирует его в зависимости от данных получаемых от связанных с ним датчиков (обратной связи). Эти датчики являются калиброванными (с определенной погрешностью) слаботочными цепями.

Такие условные подсистемы выделены в таблице цветом фона, строки окрашенные в два цвета относятся сразу к двум подсистемам. Рассмотрим их более подробно.

Управление количеством впрыска

Основные функции управления количеством впрыска обеспечивает Модуль? Управления? Количеством? Топлива? (МУКТ) включающий в себя Регулятор цикловой подачи N146, Датчик регулятора G149 и Датчик температуры топлива G81. МУКТ установлен в ТНВД и регулируется на стенде, при этом проверяется соответствие напряжения снимаемого с датчика G149 реальному количеству топлива прокачиваемого через форсунки. В некоторых пределах подстройку показаний этого датчика можно произвести в 1м канале адаптации ЭБУ.

Появление электронного управления насосом дизельного впрыска позволило значительно упростить механические системы. Создание высокого давления и впрыск, однако, все еще остаются механическими во всех действующих сегодня системах. Очевидны следующие преимущества электронной системы управления над механической:

  • более точный контроль количества введенного топлива;
  • лучше контроль начала впрыска;
  • контроль оборотов холостого хода;
  • управление рециркуляцией выхлопного газа;
  • электрическое управление движением (потенциометр на педали газа);
  • демпфирование колебаний давления;
  • доступ к системам получения и накопления данных и т.д.;
  • температурная компенсация;
  • система автоматического регулирования скорости движения.

Насос распределенного впрыска с электронным управлением

Рис. Насос распределенного впрыска с электронным управлением (источник: Bosch Press)

На рисунке показан насос распределенного впрыска с электронным управлением. Поскольку топливо должно быть введено при высоком давлении, применяются такие узлы, как гидравлическая головка, насос высокого давления и элементы привода. Электромагнитный привод со стальным сердечником регулирует положение контрольной втулки, которая, в свою очередь, управляет ходом поршня подачи и, следовательно, количеством введенного топлива. Давление топлива подается на роликовое кольцо, а оно управляет началом впрыска.

Блок-схема типичной электронной системы управления дизелем

Рис. Блок-схема типичной электронной системы управления дизелем

Действие роликового кольца обеспечивает управляемый соленоидом клапан. Эта приводы вместе позволяют управлять моментом и объемом впрыска.

На рисунке показана блок-схема типичной электронной системы управления дизелем. Идеальные значения для количества топлива и выбора момента впрыска сохраняются в картах памяти в электронном блоке управления. Вводимое количество топлива вычисляется исходя из положения акселератора и скорости вращения вала двигателя. Начало впрыска определяется следующими параметрами:

  • количество топлива;
  • число оборотов двигателя;
  • температура двигателя;
  • давление воздуха.

Блок управления ECU в состоянии сравнить расчетное время начала впрыска с фактическим началом по сигналу, поступающему от датчика движения иглы в инжекторе. На рисунке показан типичный инжектор, включающий в себя датчик движения иглы.

Инжектор дизельного двигателя с датчиком движения иглы

Рис. Инжектор дизельного двигателя с датчиком движения иглы

Контроль рециркуляции выхлопного газа осуществляется простым клапаном с соленоидом.

Управление клапаном осуществляется в зависимости от скорости вращения и температуры двигателя и введенного количества топлива. ECU управляет также остановкой соленоида и питанием запальных свеч через соответствующие реле.

Типичный пример запальной свечи для дизеля

Рис. Типичный пример запальной свечи для дизеля

На рисунке приведено расположение компонентов электрической системы управления дизельным двигателем.

Расположение компонентов электрической системы управления дизельным двигателем

Рис. Расположение компонентов электрической системы управления дизельным двигателем


Именно о таких обстоятельствах и о дизельном двигателе и пойдет речь.

Итак, постановка задачи:

  • Дизельный двигатель с механическим насосом DW8, производства концерна PSA, 2000 г.в. Насос издох от времени.
  • Новый топливный насос, приобретенный по случаю, с электронным управлением опережения впрыска от модификации мотора DW8B (Те самые обстоятельства).
  • Полное отсутствие проводки под электронное управление, самого блока управления.
  • Желание разобраться с нехитрой электроникой насоса, поднять навык, поглубже изучить работу таких насосов.
Немного теории

Раньше, когда дизельные двигатели были большие, они управлялись рядными насосами высокого давления. Всё очень просто — на каждый цилиндр плунжер, который давит топливо через форсунку. На плунжер давит кулачковый вал, который имеет изменяемую высоту подъема кулачков, так получается управление двигателем.

Потом стали делать насосы посложнее, распределенного типа. Плунжеров там один-два, топливо под давлением уже распределяется по цилиндрам специальным механизмом. Управление посложнее, но всё же механическое — рычаг газа и всё.

Полностью электронные системы впрыска сменили механические — каждая форсунка открывается по команде с блока управления, точно дозируя топливо и обеспечивая ну самый экологичный и экономичный режим работы двигателя.

Что за опережение впрыска? Как выяснилось позже, необычайно важный параметр в работе двигателя. От него зависит и приемистость, и максимальные обороты, и расход двигателя. Аналог на бензиновых моторах — УОЗ (угол опережения зажигания).

Суть этого самого угла опережения впрыска проста: чтобы сгореть топливу в цилиндре требуется время. Чем выше обороты двигателя, тем меньше времени есть у топлива, и поэтому его надо впрыснуть в цилиндр пораньше, чтобы после прохождения поршня через ВМТ топливо уже горело и отдавало энергию маховику. На низких оборотах наоборот, впрыскивать топливо надо сразу у ВМТ, чтобы оно начало гореть не заранее, и не создавало нагрузку на идущий вверх поршень. На холодном двигателе впуск надо делать раньше, на горячем — позже. Под нагрузкой — раньше (топлива больше), без — позже. Вот такая вот наука в одном параметре.

Беглое гугление показало довольно скудный объем информации по вариантам регулирования — очевидно это удел разработчиков топливной аппаратуры, даже ремонтники не оперируют какой-то теорией. Особенно печально с абсолютными значениями углов — для разных двигателей значения немного разные, и всё покрыто мраком тайны.

Понимание начало строиться с этой диаграммы:


Ну, за исключением отсутствия абсолютных значений, ничего сложного.

Вместе с теоретическими изысканиями стоило посмотреть и механический аналог всей этой системы — благо он есть в старом насосе. Механизм опережения впрыска там выполнен очень просто, даже изящно. Поршень, толкаемый давлением топлива в корпусе насоса подперт пружиной и связан с исполнительным механизмом — кольцом опережения. При возрастании оборотов давление на поршень растет и он сдвигает впрыск в раннюю сторону. При возрастании нагрузки происходит абсолютно то же. Кроме того, жесткость пружины изменяется при нажатии на педаль газа — чем больше нажата педаль, тем слабее пружина, и тем больше угол. Осталось теперь только реализовать всё то же в виде электроники, а значит пришло время оценить, что доступно из датчиков и исполнительных механизмов.

Проще всего с последними. Их ровно одна штука, клапан опережения впрыска, два провода. Представляет из себя соленоид, который отпирает топливную магистраль, тем самым понижая давление на кольцо опережения в насосе. Полностью открытый клапан соответствует минимальному опережению, закрытый — максимальному. Регулирование производится при помощи ШИМ на частоте около 50Гц. Степень регулировки высока, этим клапаном можно вытянуть целый зуб на ремне ГРМ, диапазон около 25-30 градусов. Это из плюсов. Из минусов — одному углу соответствуют разные значения заполнения управляющего сигнала в зависимости от температуры топлива. Это автоматически исключает открытую систему регулирования, и значит, пора посмотреть на датчики.

Итак, главный параметр, который контролируется системой — текущий угол опережения зажигания. Угол подразумевает значение в градусах между чем-то и чем-то. У дизельного двигателя это два датчика: датчик положения коленчатого вала и датчик подъема иглы в форсунке первого цилиндра.

Датчики в моем двигателе выполнены индуктивными. Вот картинка, которая примерно соответствует датчику положения коленвала:


Однако, на дизельных автомобилях, датчик этот выполнен немного иначе — на картинке датчик взаимодействует с зубцами на маховике, в моем случае на маховике есть два углубления напротив датчика по диаметру. Они дают два импульса на оборот маховика, что означает 4 импульса на один оборот вала топливного насоса. Эту нехитрую мудрость я познал, получив сигнал, в 4 раза превышающий по частоте расчетный. В этом подходе есть плюс: так как импульса 4, можно снимать сигнал с любой форсунки.


Датчик подъема иглы выполнен так же, но в корпусе форсунки. Топливо, под давлением подрывает иглу распылителя, одновременно наводя в катушке форсунки слабый импульс.

Итак, для минимальной работоспособности системы необходимо два датчика. В моем атомобиле был (к счастью) один — датчик положения коленвала. Форсунку с датчиком пришлось приобрести отдельно, благо, на разборке стоит она совсем ничего.

Теперь сигналы надо обработать и ввести в контроллер, очередная трудность. Трудность потому, что готовой схемотехники входных цепей что-то в интернете не видать. В угаре конструирования был собран на коленке простейший формирователь сигнала: дифференциальный усилитель на LM358 и триггер Шмидта. Коэффициент усиления был выбран наобум, и равнялся примерно 50. Какова же была радость, когда с обоих датчиков я получил вполне нормальный сигнал!

Самое время было оценить реальные параметры двигателя. Так же на коленке была собран простейший измеритель угла между двух сигналов с приемлемой точностью в 1 градус. Конструкция — микроконтроллер ATMEGA8A и семисегментный индикатор для наглядности.

Пришло время собрать всё это воедино, красиво оформить и откатать блок управления. Однако, радость была кратковременной. Сначала я выяснил, что простейший формирователь сигнала с форсунки очень сильно сбоит и даёт пачку импульсов вместо одного при повышении оборотов до 1800-2000 об/мин, совершенно не помогли в борьбе с этим ни защитные диоды, ни экранировка кабелей, ни игра с коэффициентом усиления, ни сборка типовой схемы формирователя из бензинового ECU. Поиск решения данной проблемы периодически всплывает на просторах рунета. Там же и был подсказан правильный ход мыслей — воспользоваться специализированной микросхемой.


Зовется она MAX9926, это целая линейка специализированных ИС для датчиков положения коленвала, датчиков ABS и прочих индуктивных. По отзывам — ну просто панацея, вытягивает полезный сигнал с уровня шумов и при наличии помех. Однако, ни найти её по месту жительства (даже не слышали), ни заказать из Китая (дорого и только крупные партии) я её не смог. Но есть ведь даташит с внутренней структурой, чего бы не повторить?

В результате родилась вот такая схема:


Небольшие пояснения

На микросхеме U5 собран дифференциальный усилитель с умеренным усилением. Никаких особенностей тут нет, разве что однополярное питание без резисторов сдвига, они не нужны для данного ОУ.

Интересная часть собрана на компараторе U6. По сути, это базовый компаратор-одновибратор с защелкой. Гистерезис вводится резистором R24, а резистор R23 и диод D10 задерживают задний фронт сигнала примерно на 5мс, что позволяет игнорировать все сигналы с частотой повторения выше 200 гц.

Опорный вход компаратора висит под изменяемым потенциалом, благодаря диоду D11 и резисторам R26, R27. Чем выше уровень сигнала на входе компаратора, тем выше порог его срабатывания. Это решает проблему разного уровня полезного сигнала в зависимости от частоты вращения двигателя.

Это заработало! Теперь без помех принимается сигнал и от форсунки, и от датчика коленвала. Самое время регулировать опережение впрыска. Очевидно, что для регулирования просто таки напрашивается ПИД-регулятор. Сложность, как всегда, в его настройке.

Закон изменения угла опережения от оборотов пока забит не в таблицу, а подчиняется линейному закону, без каких-то изысков. Для проверки сойдет, а там можно и заморочиться.

О железе

Так так процессы в данном регуляторе текут медленно, то и особого быстродействия не требуется. С задачей справился AVR-микроконтроллер MEGA8A на частоте всего 1МГц. Он комфортно успевает считать ПИД, обрабатывать прерывания по датчикам, отображать текущий угол на семисегментном индикаторе и выводить отладочную информацию в последовательный порт.


В общем, можно и нужно подводить итоги.

Разработка определенно удалась. Пару сотен километров на новом насосе не показали разницы в поведении по сравнению со старым, механическим. Расход топлива даже немного упал, и составил приятные 7.5л на сотню в городском цикле.

Навыков было получено бессчетное множество, как по теории топливной аппаратуры, так и по программированию микроконтроллеров.

Планы на будущее

В статье забыл упомянуть важное отличие дизельного двигателя от бензинового. В бензиновом моторе приготовление топливной смеси начинается с воздуха. Отсюда обязательные атрибуты любого ЭБУ для безнина: датчик давления воздуха (относительного или абсолютного), расходомер, датчик температуры. Регулировка двигателя тоже воздухом — дроссель.

На дизеле же смесь всегда обеднена, ни о каком стехиометрическом составе смеси нет и речи. В любом режиме воздуха хватает, это заложено самой конструкцией дизельного двигателя. Регулировка исключительно количеством топлива, и учитывать воздух при работе ЭБУ не нужно. Ситуация поменялась у Common Rail дизелей, там воздух считается так же как и на бензинках, хотя ошибки по количеству воздуха дизелям не критичны.

Итак, старенькая Киа Прайд. Под капотом у неё есть вот такая штука, к которой подходит десяток проводов — это распределитель зажигания, в корпус которого заодно встроены датчики положения распредвала и катушка зажигания.


Нас для начала интересуют датчики положения вала. Если мы начнём этот распределитель немного разбирать, внутри мы увидим:


Если поразбирать еще немного, то мы увидим и внутреннее колесо, и сами датчики.


Эти два жестяных колеса сидят на валу, вращаются вместе с ним — и, о чудо, формируют в двух торчащих наружу проводах вот такой очень простой сигнал:


На этом наше везение не заканчивается: хотя мы и знаем, что аккумулятор в автомобиле обычно двенадцативольтовый — сигнальная электроника работает обычно на пяти вольтах! А это значит, что этот сигнал можно вот абсолютно как он есть подключить к например stm32f4discovery — это такая плата с микроконтроллером, в которой цена менее тысячи рублей сочетается с 32ых битным процессором частотой 168 МГц и даже арифметическим сопроцессором.


Если решить программировать это чудо с использованием ChibiOS/RT, хотя бы для упрощения интерфейсов работы с периферией, то вот таким несложным кодом мы получим в консоль работающий тахометр.

По-моему, достаточно просто. Но, всё-таки одно дело — считать что-то с датчиков, и совсем другое дело — сгенерировать какой-то управляющий сигнал.
Давайте разберёмся, как же управляются форсунки?

Чтоб не экспериментировать сразу же с большим и железным двигателем, продолжим пока только с оригинальным блоком управления — даже если мы его хотим заменить на свою плату со своим кодом, всё равно будет полезно собрать побольше информации. Например, будет полезно
собрать информацию о ширине управляющего форсунками сигнала в зависимости от оборотов двигателя.

Итак, берём блок управления и кладём его на стол.


Аккумулятор у нас в машине на 12 вольт? так и старый ATX блок питания — тоже на 12 вольт, его и используем для питания блока управления на время экспериментов.


Когда мы подключались к автомобильной проводке, мы видели там пятивольтовый сигнал — но сам датчик положения коленвала работает как открытый коллектор — т.е. провод датчика либо заземлён, либо ни к чему не подключён. Чтоб эмулировать такой датчик, нам будет нужен транзистор.

И немного кода для генерации сигнала.

Форсунки впрыска топлива управляются заземлением идущего к ним от блока управления провода. Чтоб интерпретировать такой сигнал от лежащего на столе блока, нам понадобятся один диод и один резистор:

Соберём это всё и запустим. И, опять чудо! Стандартный блок управления нам поверил, и на основании всего лишь одного эмулированного датчика — датчика положения распредвала — начал пытаться управлять форсунками!


На самом деле, для получения осмысленной таблицы подачи топлива нам нужно будет начать эмулировать еще и датчик расхода воздуха. Когда мы начнём управлять настоящими форсунками, нам уже не хватит простого транзистора для заземления этого примерно одноамперного соленоида — но всё это детали. Главное — сделать блок управления двигателем с нуля кажется реальным — так что я продолжаю этим заниматься.

Читайте также: