Оценка состояния водителя и нейроинтеллект

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

Одной из распространенных причин аварий на дорогах является усталость — до 25% водителей попадают в ДТП во время длительной поездки. Чем дольше человек находится в дороге, тем ниже падает бдительность. Согласно проведенным исследованиям, всего 4 часа вождения снижают реакцию в два раза, а после восьми часов — в 6 раз. Хотя проблема кроется в человеческом факторе, производители автомобилей стремятся обезопасить езду и пассажиров. Специально для этих целей разрабатывается система контроля усталости водителя.

Что такое система контроля усталости водителя

Разработка впервые появилась на рынке от японской компании Nissan, которая запатентовала революционную технологию для автомобилей в 1977 году. Но сложность технической реализации в то время заставила производителя сосредоточиться на более простых решениях для повышения безопасности транспорта. Первые рабочие решения появились спустя 30 лет, но их продолжают совершенствовать и улучшать способы распознавания усталости водителя.

Суть решения заключается в том, чтобы анализировать состояние водителя и качество вождения. Изначально система определяет параметры при старте поездки, что позволяет оценить полноту реакции человека, а после этого начинает отслеживать дальнейшую скорость принятия решений. Если обнаружено, что водитель сильно устал, появляется уведомление с рекомендацией отдыха. Отключить звуковые и визуальные сигналы нельзя, но они автоматически появляются через заданные промежутки времени.

Системы начинают контроль состояния водителя с привязкой к скорости движения. К примеру, разработка Mercedes-Benz начинает работать только от 80 км/ч.

Особая потребность в решении наблюдается у водителей одиночек. Когда человек едет с пассажирами, они могут поддерживать его бодрое состояние разговорами и отслеживать усталость. Самостоятельная езда способствует сонливости и замедлению реакции на дороге.

Назначение и функции

Главное предназначение системы контроля усталости заключается в предотвращении аварийных ситуаций. Это осуществляется с помощью наблюдения за водителем, определения замедленной реакции и постоянной рекомендации отдыха, если человек не останавливает движение. Основные функции:

  1. Контроль движения автомобиля — решение самостоятельно отслеживает дорогу, траекторию движения, допустимые скорости. Если водитель нарушает правила скоростного режима или покидает полосу, система подает звуковые сигналы, чтобы повысить внимание человека. После этого появятся уведомления о необходимости отдыха.
  2. Контроль водителя — изначально отслеживается нормальное состояние водителя, а затем отклонения. Реализация с помощью камер позволяет наблюдать за человеком, а в случае закрытия глаз или падения головы (признаки сна) подаются предупреждающие сигналы.

Основная сложность заключается в технической реализации и обучении техники определять реальную усталость от ложных показаний. Но даже такой способ реализации позволит снизить влияние человеческого фактора на уровень аварий.

Альтернативные варианты подразумевают контроль физического состояния водителя, когда специальное устройство считывает параметры тела, включая моргание, частота опускания век, уровень открытости глаз, положение головы, наклон тела и другие показатели.

Конструктивные особенности системы

Элементы конструкции системы зависят от способа реализации и контроля движения. Решения для слежения за водителем сконцентрированы на человеке и происходящем в салоне транспорта, а остальные варианты — на показателях авто и обстановке на дороге. Рассмотрим несколько вариантов конструктивных особенностей.

Австралийская разработка DAS, которая находится на стадии тестирования, предназначена для слежения за дорожными знаками и соблюдения транспортом требований скоростного режима и норм движения. Чтобы анализировать ситуацию на дороге, используют:

  • три видеокамеры — одна фиксируется на дороге, две остальные отслеживают состояние водителя;
  • блок управления — обрабатывает информацию о дорожных знаках и анализирует поведение человека.

Система может предоставить данные о передвижении автомобиля и скорости езды на определенных участках.

Другие системы оснащаются датчиком руля, видеокамерами, а также электроникой, которая может отслеживать параметры тормозной системы, устойчивости при движении, показателях двигателя и многое другое. В случае усталости подается звуковой сигнал.

Принцип и логика работы

Принцип работы всех систем сводится к тому, чтобы определить уставшего водителя и предотвратить ДТП. Для этого производители используют различные конструкции и логику работы. Если говорить о решении Attention Assist от Mercedes-Benz, то выделяются следующие особенности:

После начала движения система анализирует и считывает нормальные параметры управления автомобилем в течение 30 минут. Затем происходит слежение за водителем, включая силу воздействия на рулевое колесо, использование переключателей в салоне автомобиля, траектория поездки. Полноценный контроль усталости осуществляется при скорости от 80 км/час.

Attention Assist принимает во внимание такие факторы, как состояние дороги и условия поездки, включая время суток и длительность езды.

Дополнительный контроль применяется к движению автомобиля и качеству управления рулевым колесом. Система считывает такие параметры, как:

  • манера вождения, которая определяется при изначальном движении;
  • время суток, продолжительность и скорость движения;
  • эффективность использования подрулевых переключателей, тормозов, дополнительных устройств управления, силы вращения руля;
  • соответствие скорости максимально допустимой на участке;
  • состояние дорожного покрытия, траектории движения.

Если алгоритм находит отклонения от нормальных параметров, система задействует звуковое уведомление для повышения бдительности водителя и рекомендует временно остановить поездку с целью отдыха.

kontrol-traektorii

Существует ряд особенностей у систем, которые в качестве основного или дополнительного фактора анализируют состояние водителя. Логика реализации основана на использовании видеокамер, которые запоминают параметры бодрого человека, а затем выполняют мониторинг при длительных поездках. С помощью камер, направленных на водителя, получают следующую информацию:

  • закрытие глаз, причем система различает моргание и сонливость;
  • частота и глубина дыхания;
  • напряжение лицевых мышц;
  • уровень открытости глаз;
  • наклон и сильные отклонения в положении головы;
  • наличие и частота зевания.

Учитывая дорожные условия, изменения в управлении транспортом и параметры водителя, появляется возможность предотвращать аварии. Система автоматически информирует человека о необходимости отдыха и подает экстренные сигналы для увеличения бдительности.

Как называются подобные системы у разных автопроизводителей

Поскольку большинство производителей автомобилей заботится о безопасности транспорта, они разрабатывают собственные системы контроля. Название решений у разных компаний:

  • Attention Assist от Mercedes-Benz;
  • Driver Alert Control от Volvo — осуществляет видеоконтроль за дорогой и траекторией движения на скорости от 60 км/ч;
  • Seeing Machines от General Motors анализирует состояние открытости глаз и сосредоточенной на дороге.

Если говорить о Volkswagen, Mercedes и Skoda — производители используют схожие системы контроля. Отличия наблюдаются у японских компаний, которые отслеживают состояние водителя с помощью камер внутри салона.

preduprezhdenie

Преимущества и недостатки системы контроля усталости

Безопасность движения на дорогах является главным вопросом, над которым работают производителя авто. Система контроля усталости обеспечивает водителей рядом преимуществ:

  • снижение количества ДТП;
  • слежение как за водителем, так и за дорогой;
  • увеличение бдительности водителя с помощью звуковых сигналов;
  • рекомендации для отдыха при сильной усталости.

Из недостатков систем необходимо выделить сложность технической реализации и разработки программ, которые будут правильно отслеживать состояние водителя.

Надежность водителя и психофизиология вождения

Под надежностью водителя понимается способность своевременно и безошибочно принимать и обрабатывать информацию о состоянии транспортных средств (ТС), дорожных условиях, а также принимать и реализовывать адекватные решения по управлению ТС в течение заданного промежутка времени с допустимыми уровнями напряженности труда и рисками возникновения конфликтной ситуации, ДТП и ЧС (Шашина Е. В., МАДИ).



Пассажирский автобус из Краснодара перевернулся из-за спящего водителя, пострадали 10 человек (02.00 10 июля 2015 года, 894 километр трассы М4 Дон в Ростовской области)

Можно выделить четыре основные составляющие надежности водителя:
— медицинская – отсутствие заболеваний, проявления которых могут привести к потере контроля над автомобилем в процессе движения;
— психофизиологическая – комплекс личностных качеств водителя (свойства нервной системы, память, время реакции, качества внимания и т. п.), недостатки которых могут вызвать потерю времени в условиях его дефицита, например в опасной ситуации, или привести к ошибкам в принятии решений либо к их исполнению;
— профессиональная – наличие опыта, совокупность навыков управления автомобилем, позволяющих реализовать наиболее рациональные приемы обеспечения безопасности в любых условиях движения, в том числе опасные и критические ситуации;
— социально-психологическая – совокупность личностных качеств человека (уровень общей культуры, качество ответственности, дисциплинированности и т. п.), определяющих характер поведения на дороге, представляющей собой своеобразную социальную среду.

Причины, влияющие на снижение надежности водителей, так или иначе, связаны с ее составляющими. Например, неумение водителя безопасно управлять автомобилем чаще всего обусловливается его низкими психофизиологическими качествами, болезнью, чрезмерным утомлением, стрессовым состоянием и т. п. Причинами нежелания водителя безопасно управлять автомобилем является низкий уровень культуры и правосознания, агрессивность, безответственность, склонность к употреблению алкоголя.
Безопасное вождение требует от водителя не только хороших рефлекторных реакций, но и ненапряженной умственной деятельности с хорошей концентрацией внимания. Недопустимые уровни стресса, усталости и отвлечение внимания на дороге ухудшают производительность водителя и могут привести к временной потери концентрации, способности оценить риск и потери управления автомобилем, часто приводящим к ДТП. Исследователи определили, что вопрос, влияющий на уровень смертности и экономических потерь от ДТП, может быть решен по средствам разработки и внедрения контекстно-зависимых систем поддержки водителей. Такие системы способны прогнозировать наступление ДТП и заблаговременно предупреждать водителя об этом.
Многие системы поддержки процесса вождения основываются на измерении биосигналов, регистрируемых с водителя с помощью различных датчиков. На основании информации, извлекаемой из биосигналов, исследователи оценивают эмоции, уровень стресса, усталость, аффективное состояние и засыпание водителя.

Научные лабораторные исследования мировых вузов

В работах исследователей Массачусетского технологического института (Massachusetts Institute of Technology) описываются методы сбора и анализа физиологических данных в режиме реального времени в процессе вождения для определения уровня стресса водителя. В качестве биосигналов используются электрокардиограмма, электромиограмма, кожная проводимость, и дыхательная активность. Экспериментальная база включала 24 испытуемых, с каждого из которых в течение 50 минут регистрировались перечисленные выше сигналы. Использовались три вида деятельности: отдых от вождения, движение по шоссе и движение по городу. Исследователями удалось достигнуть 97% точности в распознавании уровней стресса, произведенного с помощью линейного дискриминантного анализа. По величине стресс был разделен на высокий, средний и низкий уровни. Было показано, что вариабельность сердечного ритма и кожная проводимость в наибольшей степени коррелируют с уровнем стресса.



Все датчики подключаются к компьютеру. Это разработка считается одной из ведущих в мире в области психофизиологии вождения



Кривые измеряемых биосигналов и уровня стресса

Непрерывный мониторинг аффективного состояния водителя в реальном времени в процессе вождения является сложной задачей, включающей сбор, предварительную обработку, выделение информативных признаков и классификацию информации, свидетельствующей о состоянии усталости/стресса водителя.
В университете Янины (University of Ioannina, Греция) разработали телеметрическую систему для контроля эмоционального состояния водителей гоночных автомобилей. В основе построения системы лежит сбор физиологических данных (ЭКГ, ЭМГ, КГР, дыхательная активность, видеоизображение лица), которые передаются по беспроводному каналу в централизованную систему, осуществляющую классификацию и оценку эмоционального состояния водителя. Для реализации классификатора использовались сразу несколько методов: наивный байесовский классификатор, машина опорных векторов(SVM), адаптивная сеть нечеткого вывода(ANFIS), дерево принятия решений и другие. В результате авторами было предложено разбиение уровней эмоционального состояния по возбуждению – высокий стресс и низкий стресс, и по валентности – эйфория и дисфория.



На базовой станции распознаются эмоциональные состояния и строится 3D-модель мимики лица



ЭМГ- датчики закрепляются на лице, дыхательные датчики с помощью пояса на груди, ЭКГ- на груди, КГР – на руке

Для исследования состояния усталости водителей греческие ученые применяли динамические и статические байесовские сети. В качестве анализируемых факторов использовались качество сна, условия труда, условия окружающей среды, биологические ритмы, а также физиологические сигналы — движение глаз, движение головы и выражения лица.

Индийские ученые (Birla Institute of Technology and Science) произвели измерение уровня стресса водителя, на основе фотоплетизмографического сигнала и КГР. На основе амплитудно-временных параметров исходных сигналов и пульсограммы авторы выделили множество критериев, по которым производится определение уровня стресса. Основой в работе является статистический метод определения стресс-тренда, связанный с прогнозированием значений сигнала, на основе изучения тренда сигнала. Так например, в данном методе анализируется показатель, рассчитанный как разница между фактическим значением функции и значением, предсказанным с помощью экспоненциально взвешенного скользящего среднего (EWMA) предыдущих значений.



Создается впечатление что управлять автомобилем в такой обвязке датчиков просто невозможно!



В качестве программной среды исследователи используют Biotrace+

Австралийские ученые из Технологического университета Сиднея (University of Technology Sydney) произвели оценку электрокардиограммы и вариабельности ритма сердца во время проведения лабораторного теста симуляции вождения. Измеряемым интегральным показателем стало состояние тревоги и усталости.



Исследовались 12 участников. Для каждого отмечались значения тревоги(fatigue) и усталости(alert). В качестве классификатора применялась нейронная сеть прямого распространения и с обратной связью

Рассчитываемый на основе спектра ритма сердца индекс вагосимпатического взаимодействия(балансовый показатель LF/HF) послужил идентификатором перехода от сонного/утомленного состояния к состоянию тревоги. В результате оказалось, что балансовый показатель уменьшается с увеличением усталости, в то время как его увеличение показывает повышенную умственную нагрузку и состояние тревожности.

Все вышеперечисленные системы являются лабораторными разработками и пока не было их явного внедрения в исходном виде в производство и продажу. Конечно, в первую очередь это объясняется сложностью технической реализации систем, многопараметричностью измеряемых показателей, недостаточностью экспериментальной базы и видимо отсутствием необходимых стартап-площадок для вывода продукта на рынок.
Однако некоторые упрощенные системы подобного класса уже появились в продаже.

Стоит отметить, что данное устройство мы недавно закупили для своих лабораторных исследований. К сожалению спящих водителей протестировать пока не удалось, а вот на спящих инженерах система работает отлично!) При засыпании в бытовых условия, как и положено, возникают все указанные пробуждающие сигналы.

Компания Anti-Sleep Pilot предложила устройство, которое определяет, когда водителю пора остановиться и передохнуть. Anti-Sleep Pilot работает путем сравнения хранимых данных (времени суток, кто управляет автомобилем, сколько времени автомобиль был в пути без остановок). Время от времени гаджет издает звуки и светится оранжевым светом, чтобы разбудить заснувшего водителя. Сразу после звукового или светового сигнала водитель обязан коснуться корпуса системы. В зависимости от времени реакции, устройство определяет, бодрствует ли водитель или ему необходимо сделать перерыв.



Anti Sleep Pilot включает в себя:
-акселерометр, который регистрирует ускорение автомобиля, необходимое для анализа вождения;
-высокоточные часы, которые определяют время вождения и реакции, используемые для расчёта уровня утомления водителя;
-датчик света, который автоматически адаптирует подсветку дисплея, чтобы удовлетворять уровню окружающего освещения в автомобиле;
-звуковой датчик, также автоматически адаптирующий звуковые сигналы под уровень шума в автомобиле;
-сенсорный датчик, обеспечивающий простоту взаимодействия во время вождения;
-интеллектуальную кнопку включения/выключения для экономии заряда батареек, когда система не используется.


Компания хорошо зарекомендовала себя в железнодорожном транспорте, где ее телемеханическая система контроля бодрствования машиниста (ТСКБМ) помогает предотвращать засыпание водителей. Для автомобильного транспорта создана система поддержания работоспособности водителя Vigiton. Однако, засыпание — это довольно узкоспециализированная задача в оценке состояния всего организма. Сейчас в связи с нарастающими в геометрической прогрессии условиями повышенного стресса, агрессивности трафика, крайне необходимы системы, позволяющие фиксировать интегральные показатели состояния организма. Своевременная их индикации помогла бы значительно снизить количество конфликтных ситуаций, дорожно-транспортных происшествий и как следствий чрезвычайных ситуаций. Всем желаю доброго пути!

image

Автомобильные и технологические компании лихорадочно занимаются системами безопасности, которые могут обнаруживать различные объекты и избегать столкновения с ними. Но занимается ли кто-нибудь разработкой систем, которые могли бы наблюдать за водителями и отслеживать опасное рассеивание их внимания?

Да, но об этом почти никто не говорит.

Впрочем, люди будут оставаться в игре еще много лет, а частичная автоматизация создает ложное чувство безопасности – из-за него люди слишком сильно отвлекаются от управления автомобилем.

Многие исследования и испытания подтверждают тот вывод, который можно сделать после просмотра фильма. В этом тексте мы хотим задать два ключевых вопроса:

  • Почему сейчас нужны системы мониторинга водителя?
  • Какие компании и какие технологии лидируют на рынке этих систем?

Собираем сведения

На прошлой неделе Страховой институт безопасности дорожного движения (IIHS) опубликовал результаты исследования, по которым видно негативное влияние автоматизации в автомобилях 1 и 2 уровня автономности.

Тревогу в связи с этим бьет не только IIHS.

Оценки систем помощи при вождении – октябрь 2020

image

Мисси Каммингс, директор лаборатории по исследованиям взаимодействия людей и систем автоматизации из Университета Дюка в прошлом месяце высказывалась о "загадках частичной автоматизации". В своем недавнем исследовании «Взаимодействие автопилота и систем мониторинга водителей в Tesla Model 3” Каммингс подчеркнула, что так называемая „совместная ответственность“ компьютеров и людей является реальной проблемой.

Ранее в этом году Национальный совет по транспортной безопасности (NTSB), расследовавший две фатальные аварии с участием автомобилей от Tesla, опубликовал итоговый отчет по этому делу. Председатель NTSB делал весьма резкие замечания о системе автопилота от Tesla: „Чрезмерное доверие водителей к автопилоту от Tesla привело к трагическим последствиям“.

Принимая во внимание все свидетельства об отвлечении водителей из-за систем автоматизации, Колин Барнден, ведущий аналитик из Semicast Research сказал, что он „просто не понимает почему мы так долго не осознавали важность систем мониторинга водителей и потребность в них“.

Барнден, который зачастую в одиночку защищает системы мониторинга водителей перед СМИ и сообществом аналитиков, имеет свое мнение по этому вопросу. Он сделал следующее заявление:

Все основные СМИ сейчас преимущественно пишут о системах беспилотной езды. Пресса склонна следить за деньгами. Так, например, рыночная капитализация Tesla составляет 460 миллиардов долларов. Mobileye была продана за 15 миллиардов. Seeing Machines (разработчик систем мониторинга водителей) стоит около 275 миллионов долларов.

Несмотря на все деньги, которые крутятся на этом рынке, у NHTSA нет никаких нормативов касательно систем мониторинга водителей. Между тем, в Европе есть две дорожные карты внедрения этих систем (Euro NCAP и общие правила безопасности в ЕС). Даже у Китая есть стратегия развития мониторинга водителей! Кажется, что все сложилось в пользу разработчиков полноценных стеков для беспилотной езды. Так уж сложилось, что все они находятся в США.

Оглядываясь назад, Барнден сказал:

Скепсис в отношении систем мониторинга водителя

Внесем ясность, автопилот от Tesla оснащен датчиком, который отслеживает небольшие сдвиги положения рулевого колеса – так система контролирует, что водитель не убирает руки с руля. Как известно, эта система не идеальна, она не принимает никаких решений, пока водитель не убирает руки с руля на целых две минуты.

За последние несколько лет на рынке систем мониторинга водителей появилось множество новых компаний. Среди них можно выделить Seeing Machines (Канберра, Австралия), Smart Eye AB (Гётеборг, Швеция), Eyesight Technologies (Герцлия, Израиль), Jungo Connectivity (Нетания, Израиль), Xperi, которая приобрела FotoNation (Сан-Хосе, Калифорния) и Affectiva (Бостон).

image

Базовые блоки систем мониторинга водителей от Smart Eye.

Если Маск все еще считает, что системы мониторинга водителей ограничиваются отслеживанием направления взгляда, то он немного отстал. Многие системы от ведущих компаний уже не ограничиваются отслеживанием какого-то одного параметра (вроде положения головы, взгляда, лица или положения век). Эти системы отслеживают совокупность параметров для более целостного представления данных и их анализа.

Также ДиФоре отметил, что раннее лидерство Seeing Machines на рынке беспилотного транспорта обусловлено не только точностью собираемых данных, но и архитектурой их решений, которая облегчила работу с сигналами и доступ к ним.

Различий между Seeing Machines и их конкурентами стало больше, когда компании на рынке систем мониторинга водителей стали применять научные сведения о человеческом факторе к собранным данным, чтобы понять что же на самом деле происходит в голове у водителя.

От распознавания лиц к чтению мыслей

Следующий этап – использование вероятностных систем ИИ для применения сведений о человеческом факторе и поведении к оценке уровне вовлеченности водителей.

Чипы и программные решения

До недавнего времени многие компании были уверены в том, что в их решениях не нужны системы мониторинга водителей, либо ограничивались обсуждением передачи ответственности между машинами и людьми в автомобилях с 3 уровнем автономности. Многие компании думали, что если они планируют перескочить третий уровень и сразу разрабатывать машины четвертого, то и системами мониторинга можно не заниматься.

Отвечая на вопрос о автопроизводителях, которые используют в своих решениях системы мониторинга водителей, Барнден отметил, что GM в начале 2013 года представила систему мониторинга, которая позже стала Super Cruise. За ними вскоре последовали BMW, Subaru и Nissan, затем в 2017 такую систему установили в Mercedes S-Class 2017 года, а в 2018 году систему мониторинга установили в Ford F-150.

Барнден делает ставку на Seeing Machines – отчасти ввиду их опыта и ряда их соглашений на поставку. Компания Seeing Machines гордится большими массивами данных, собранных с более чем 23 000 водителей грузовиков (к ним также нужно прибавить данные с нескольких тысяч автомобилей, собранные в рамках лицензионного соглашения с Caterpillar).

Представитель Seeing Machines отметил, что у компании уже сейчас есть девять партнерских соглашений на использование их систем в продуктах OEM-производителей.

DMS в железе и ПО

Как нам объяснил ДиФоре, примерно половина бизнеса Seeing Machines в области систем мониторинга водителей основана на программных решениях, а другая – на микросхемах. В области систем мониторинга давним партнером Seeing Machines является Xilinx. Благодаря своей программируемости, чип Xilinx Fovio получил признание от OEM-производителей.

Seeing Machines также предлагает OEM-производителям исключительно программные системы мониторинга, которые позволяют экономить на специфических чипах.

Согласно заявлениям Seeing Machines, GM – единственный автопроизводитель, использующий систему мониторинга водителей в Cadillac CT6 (в качестве компонента системы Super Cruise). Seeing Machines добавила, что новые модели уже находятся в разработке. Seeing Machines поставляла только свое ПО GM по условиям партнерского соглашения.

Seeing Machines также выиграла контракты на поставку систем мониторинга водителей в виде чипов Fovio у двух американских автопроизводителей и одной китайской компании.

НПП ИТЭЛМА всегда рада молодым специалистам, выпускникам автомобильных, технических вузов, а также физико-математических факультетов любых других высших учебных заведений.

У вас будет возможность разрабатывать софт разного уровня, тестировать, запускать в производство и видеть в действии готовые автомобильные изделия, к созданию которых вы приложили руку.

В компании организован специальный испытательный центр, дающий возможность проводить исследования в области управления ДВС, в том числе и в составе автомобиля. Испытательная лаборатория включает моторные боксы, барабанные стенды, температурную и климатическую установки, вибрационный стенд, камеру соляного тумана, рентгеновскую установку и другое специализированное оборудование.

Если вам интересно попробовать свои силы в решении тех задач, которые у нас есть, пишите в личку.

Мы большая компания-разработчик automotive компонентов. В компании трудится около 2500 сотрудников, в том числе 650 инженеров.

Мы, пожалуй, самый сильный в России центр компетенций по разработке автомобильной электроники. Сейчас активно растем и открыли много вакансий (порядка 30, в том числе в регионах), таких как инженер-программист, инженер-конструктор, ведущий инженер-разработчик (DSP-программист) и др.

У нас много интересных задач от автопроизводителей и концернов, двигающих индустрию. Если хотите расти, как специалист, и учиться у лучших, будем рады видеть вас в нашей команде. Также мы готовы делиться экспертизой, самым важным что происходит в automotive. Задавайте нам любые вопросы, ответим, пообсуждаем.

2021 год. IoT окружил нас с Вами со всех сторон. GPS/GLONASS трэкерами и всевозможными облачными платформами слежения нас зазывают со всех сторон. Казалось бы, с чего вдруг я решил, что данный пост имеет актуальность?! Но не все так однозначно - давайте разбираться!

Ни для кого не секрет, что основной статьей затрат при автомобильных грузоперевозках является стоимость топлива. Все участники данной игры (Автомобильные грузоперевозки) прилагают максимум усилий для минимизации данной статьи расходов. Автопроизводители бесконечно совершенствуют свои модели автомобилей, предлагая все более производительные, безопасные и экономичные седельные тягачи. Развитые страны строят более экономичные автомагистрали.

Логистические компании выстраивают более оптимальные логистические маршруты и казалось бы все движется только вверх и вперед и с каждым годом расходы транспортной компании на топливо должны уменьшаться! Но в жизни получается не так. Несомненно, если сравнивать 1990,2000 и 2010 года, то по мере обновления моделей грузовых автомобилей, расход топлива стремительно сокращался. К примеру для грузовиков 1990 года выпуска при перевозке 20 тонн груза расход топлива 45л/100км считался нормальным. Моделям 2000-х годов удавалось выйти из 40л/100км расхода топлива, а грузовики 2010 годов выпуска уже могли хвастаться расходом 30-35 л/100км пути. Но что происходит сейчас, в 2021году? Современные модели грузовиков заявляют о паспортных расходах в 21. 23. 25л/100км, но в реальных условиях транспортные компании получают средний расход автомобилей в районе 30-31л/100км. Встает резонный вопрос?

Получается что автопроизводители лгут и их автомобили не стали более экономичными и это всего лишь маркетинговые ходы? На самом деле нет - проблема кроется в другом.

Автопроизводители, как и производители электроники, очень сильно шагнули вперед и автомобили обогнали в своем развитии людей, которые их эксплуатируют. Ситуация стала такова, что люди, управляющие современными грузовыми автомобилями, не могут раскрыть полный потенциал автомобиля с точки зрения расхода топлива.


Навык эффективного вождения - это такой же полноценный навык, как и умение управлять мотоциклом, или езды на горными лыжами. Конечно, проехать на мотоцикле по прямой и спуститься на лыжах может, в принципе, каждый, но чтобы стать мастером в этом деле - необходимо учиться и бесконечно тренироваться.

Но, казалось бы, с этим у нас тоже должно быть все в порядке. Практически все навигационные системы и GPS/Glonass трэкеры имеют опцию ECO DRIVING которая должна оценивать водителя. Но вот тут как раз таки маркетинг чистой воды!) Опция вроде бы есть, а вот толку от нее нет!

Проанализировав большую часть предложенных решений на рынке, оказалось, что разработчики не стали заморачиваться над проблемой и взяли в основу довольно примитивную методику оценки:

Алгоритмы ECO Driving

Алгоритмы ECO Driving

Хотел было я дать комментарий к каждому параметру, в чем его + и -, но текста получилось на 3 страницы) В общем, если подвести жирную черту ИТОГО, то эти критерии оценки стиля вождения водителя настолько сильно обобщенные, что более половины ситуаций не анализируются данными критериями, а если и рассматриваются - то безобоснованно штрафуют водителей за ситуации, на которые они не влияют. К примеру критерий Остановки - за рейс Москва - Париж - Москва, автомобиль сделал 157 остановок, из них 54 остановки - это пробки, 82 остановки - это прохождение очередей на границах. 13 остановок - это загрузки/выгрузки/растаможки, и всего 8 остановок были инициированы водителем. А по данной системе оценится он по всем 157 остановкам. ) Системы оценки стиля вождения, основанные на схожих алгоритмах больше игрушка, нежели инструмент оптимизации и управления.

Что же, начнем строить свои алгоритмы!

За исходные данные мы берем седельный тягач, с расширенным CAN протоколом, цифровой ДУТ, вариации с количеством ступеней неизнашивающихся тормозных систем и наличие встроенных электронных помощников (круиз контроль, система аварийного торможения, система слежения за разметкой, система учета рельефа местности и пр.) без привязки к марке грузовика. МКПП и АКПП. Электронная педаль газа и наличием системы EBS не старше 2006г. ПО верхнего уровня Wialon. Выбор обусловлен всеядностью платформы с точки зрения телематического оборудования. GPS трэкер с интерфейсами RS,1-wire, BT, CAN BUS. Дополнительные модули RFID, выносной модуль вибраций (удара). И конечно же нам понадобится гибкая логика, что то вроде Easy Logic от Galileosky.

Итак, начнем, пожалуй, с самого энергозатратного с точки зрения автомобиля параметра.

Превентивная езда/ Режим разгона

Данный критерий характеризует способность водителя к предусмотрительному вождению, т.е. умению водителя прогнозировать и предусматривать дорожную обстановку и принимать управляющее воздействие на автомобиль во время разгона до события, а не по факту. Основная задача избегать РЕЗКИХ управляющих воздействий

Пример: водитель начинает движение и динамично разгоняется до ограничителя скорости в 83 км/ч, но тут же быстренько упирается в идущий автомобиль с меньшей скоростью 75 км/ч, а совершить обгон возможности нет и ему приходится тормозить до скорости данного транспортного средства, а затем снова разгоняться и пытаться его обгонять.

Способ реализации алгоритма: после промежутка разгона автомобиля на >=10км/ч, должен следовать равномерный участок графика скорости в диапазоне +-2км/ч.
Система выставления баллов:
22 секунды прямолинейного движения - 10 баллов,
18 секунд - 9 баллов,
15 секунд - 8 баллов
// 22 секунды взяты из расчета 500 метров прямой видимости на дороге

Для настройки системы оценок необходимо предусмотреть возможность менять константы в пользовательском режиме, т.к. баллы за критерии приведены в этой статье справочно, для понимания алгоритмов.

Превентивная езда/ Режим торможения

Здесь все аналогично Режиму разгона.

Равномерная скорость движения


Анти пример: данный параметр нам нужен для борьбы вот с таким вот графиком скорости автомобиля.

Способ реализации алгоритма: Считается количество циклов изменения вектора скорости. Идеальная езда - один цикл от троганья с места до полной остановки.


Система выставления баллов:
10 циклов - 9,0 баллов
20 циклов - 8,0 баллов

!. Изменением вектора считается изменение скорости на величину от 2 км/ч до 10 км/ч. Колебания скорости до 2км/ч обусловлено гистерезисом круиз контроля, а изменение скорости на 10 км/ч и более рассматриваем за дорожную обстановку.

Использование педали газа

Когда водитель орудует педалью газа, система управления двигателем отрабатывает нажатие на педаль газа в процентном значении и даже небольшое кратковременное дерганье педалью приводит к подачам порций топлива для отработки желаемого ускорения, но так как автопоезд с массой 40 тонн слишком инерционен, то такие управляющие воздействия незаметны водителю, но приводят к пустой трате топлива. Ошибочно мнение, что автомобиль сглаживает волнения педали для экономии топлива.

Анти пример: Режим движения водителя по проселочной дороге за впереди идущем авто. Он едет примерно с одной скоростью но постоянно мучает педаль газа туда/сюда пытаясь держаться на одинаковом расстоянии до впереди идущего авто.

Способ реализации алгоритма: Считается количество колебаний процентов нажатия педали газа. Идеальная езда - один цикл от троганья с места до полной остановки.
1 цикл - 10,0 баллов
10 циклов - 9,0 баллов
20 циклов - 8,0 баллов
!. Циклом считается изменение нажатия педали газа на величину от 2 до 30% вниз затем вверх. Аналогия как с равномерной скоростью, только анализируем график нажатия педали газа в %.

Разгон

Процесс разгона должен происходить в зеленом секторе оборотов двигателя. Если водитель разгоняется слишком медленно - то АКПП сбрасывает повышенную передачу на 850-900 об/мин, а зеленый сектор работы турбины начинается с 1040об/мин. Если же разгонять автомобиль слишком сильно - то АКПП переключает передачи в диапазоне 1300-1650 об/мин, а это уже выходит за пределы зеленого сектора.

Способ реализации алгоритма: Считаем количество раз превышения двигателем оборотов свыше 1600 и ниже 1050 при затребованной мощности.
! Если в момент превышения мощности не было затребовано, значит это режим наката или торможения моторного тормоза.
10 раз - 10 баллов
20 раз - 9 баллов
30 раз - 8 баллов

Торможение

Тут все сложно. Важно правильно тормозить! Не только важна сила нажатие педали тормоза, но и алгоритм торможения/Замедления автомобиля, поскольку постоянное и длительное очень легкое торможение палит и перегревает колодки, и его можно заменить использованием не изнашиваемых тормозных систем (торможение оборотами двигателя/ретардер/претардер/моторный тормоз/горный тормоз) . Идеальный алгоритм торможения:
1 этап торможения это накат - 10 сек длительность использования
2 этап торможения это Моторный тормоз ступень 1 - 9 сек
3 этап торможения это Моторный тормоз ступень 2 - 8 сек
4 этап торможения это Моторный тормоз ступень 3 - 7 сек
5 этап торможения это Ретардер ступень 1 - 6 сек
6 этап торможения это Ретардер ступень 2 - 5 сек и только после этого жмем на педаль)))
7 этап торможения это Рабочий тормоз 1-30% - 4 сек
8 этап торможения это Рабочий тормоз 30-50% - 3 сек
9 этап торможения это Рабочий тормоз 50-70% - 2 сек
10 этап торможения это Рабочий тормоз 70-100% - 1 сек

!! На разных авто разное количество ступеней моторного тормоза и ретардера.

Балл за одно торможение зависит от количества ступеней, которые водитель выполнил правильно.
1-10 выполнены, то балл 10,00
2-10 выполнены, то балл 9,00
5-10 выполнены, то балл 8,00
7-10 выполнены, то балл 7,00

Остановки

Поскольку трогание с места является одним из наиболее затратных по топливу процессов (около 700 грамм топлива на разгон сцепки полной массы) при движении, количество остановок, которых можно избежать, следует по возможности сократить до минимума. Тут очень важно понимать что общее количество остановок слишком неинформативный критерий! Есть пробки, особенно их много в Европе. Есть очереди на границах, есть погрузки и выгрузки на которые водители не влияют…

Способ реализации алгоритма: Считаем количество остановок после 3 км пути. Т.е. остановки через каждые 10 метров игнорируем, это пробки/очереди/загрузки/выгрузки.
5 остановок - 10 баллов
10 остановок - 9 баллов
15 остановок - 8 баллов

Сложность трассы

Не все маршруты одинаковы и количество и процент нажатия педали тормоза при поездке в Азербайджан и в Германию очень отличается и в этом нет влияния водителя поэтому сложность трассы тоже необходимо учитывать
"Средний уклон"
"Средний вес"
"Количество положительных остановок (очереди и пробки)"

Способ реализации алгоритма:
А. Средний уклон - акселерометр
Б. Средний вес - CAN
В. Количество остановок = общее количество остановок за вычетом количество ненужных остановок из п.6

Накат

С этим параметром попроще его уже все хорошо считают. Из практики - хороший накат за рейс плавает в размере 14-16% от общего пути .

Неиспользование помощников автомобиля

В современных автомобилях много очень полезных помощников, которые водители так и норовят выключить в пути, мол мне лучше знать как ехать! К примеру рельеф местности загружен практически в каждый современный автомобиль. В Мерседесе данная система называется PPC, и автомобиль выбирает скоростной режим прохождения гор и поворотов учитывая рельеф. К примеру если после высокой горы будет сразу следовать спуск, то в конце подъема на гору машина перестанет поддерживать заданную скорость и закатится на горку на скорости 50км/ч и начнет потихоньку перекатываться горку а затем разгоняться накатом, но не всем водителям такое по душе. А еще машины теперь любят сами заранее тормозить перед поворотом)

Система РРС сама заранее сбросит скорость перед перекрестком.

Система РРС сама заранее сбросит скорость перед перекрестком.

Оцениваем процент пути с включенными системами
А. Режим AUTO ВКЛ (в сравнении с Manual)
Б. РРС ВКЛ
В. Слежение за разметкой ВКЛ
Г. аварийное торможение ВКЛ
Д. Режим ECONOMY вкл (в сравнении с AUTO)
Е. круиз контроль/ограничитель скорости ВКЛ (круиз + ограничитель)
Ё. Усталость водителя ВКЛ
Ж. Слежение за дорожными знаками ВКЛ

Оценка = (А+Б+0,25*В+0,25*Г+Д+Е + 0,25*Ё + 0,25 * Ж)/6

Мощностная диаграмма пути

При движении водителю необходимо избегать диапазонов высоких оборотов при низких нагрузках и диапазонов низких оборотов при высоких нагрузках . Поэтому будем контролить режимы:


Считаем секунда вне зеленого диапазона и штрафуем голубчика))) Кстати, зачастую водители чтобы сымитировать повышенный расход топлива, к примеру после установки ДУТ, кидает автомобиль на 10 передачу вместо 12 и едет весь день на 1600 оборотах при малой нагрузке. А тут мы его и подловим) А также здесь будут видны обгоны на скорости.

Вибрация от внешнего датчика вибрации на раме

Этим параметром мы будим приучать водителей бережно относиться к авто и тормозить на лежачих полицейских и ямах в колено.

Способ реализации алгоритма: Устанавливаем внешний датчик вибрации на раме и проезжаем спящий на 20 км/ч, и удар в средненькую яму на скорости 60км/ч. Смотрим показания датчика, определяемся с какой-то критической величиной и все последующие колебания свыше этого значения штрафуем

10,0 – 0 ударов за рейс
9,00 – 2 удара за рейс
8,00 – 4 удара за рейс

Внутренний акселерометр в данном случае не подойдет, т.к. спящие на скорости 60 км/ч пневмоподвеска рама+кабина глотает. А вот колеса становятся квадратными!

P.S.. В заключении нужно сказать, что, анализируя и влияя на водителей в рамках этих критериев возможно максимально минимизировать негативное влияние водителя на расход топлива. Однако не стоит забывать, что помимо стиля вождения на расход также влияет и техническое состояние транспортного средства, и в борьбе за экономию топлива необходимо должное влияние уделять также и техническому состоянию ТС.

Приведу небольшой пример: при закоревании направляющих тормозного суппорта одного из колес на ведущей оси, расход топлива за рейс Минск, РБ-Вольфсбург, Германия – Минск, РБ вырос с 24,9 до 29,2 л/100км. Наш менее опытный водитель даже не заметил ничего неладного в пути, т.к. ступица ведущей оси рассеивает тепло через бортовую и масло моста, и колесо грелось сильнее остальных, но не критично больше, а опытный водитель в следующем рейсе жаловался на слабый накат автопоезда и легкий запах паленых колодок после длительного вождения. И стоит отметить, что используемая смазка в направляющих, имеет срок службы 36 месяц, после чего она высыхает и теряет свои свойства.

Но как видим не каждый водитель способен увидеть данные тонкие проблемы, и, следовательно, человеческий фактор необходимо по максимум исключать в нашей работе!)

Самый главный вопрос – почему стоит прислушиваться к нашему мнению?

Наша компания заняла 1 место в Mercedes-Benz FleetBoard Driver’s League среди стран СНГ.

Среднегодовой расход по автопарку за 2020 год 24,6 л/100 км (14 машин, 130-140 т.км пробега на каждый грузовик, 27 водителей)

2. Данные алгоритмы не нацелены на некую коренную ломку принципов управления автомобилем в угоду экономичности. Мы используем данную методику уже более трех лет. Она позволяет оценивать навыки управления автомобилем каждого водителя в отдельности на всем протяжении пути в автоматическом режиме. За счет чего можно видеть слабых водителей, проводить с ними работу над ошибками. Водители, имеющие высокий уровень профессионализма, с первых рейсов показывают высокие баллы вождения и приличные результаты экономичности. Но как показала практика далеко не всех водителей, порой даже с приличным стажем вождения, можно отнести к профессионалам) Матерые ребята со скепсисом выслушивают все условия и говорят пффф. кого ты лечишь. и показывают уровень! ) Но с каждым годом, доля водителей со слабыми профессиональными навыками растет все больше и больше.


Профессиональными участниками дорожного движения являются миллионы людей, каждый из которых обладает определенными психофизиологическими характеристиками, состоянием здоровья, личностными качествами, знаниями, навыками, опытом, интересом к водительской деятельности и уровнем мотивации. Кроме того, на дорогах встречается огромное количество непрофессиональных водителей и водителей-новичков, чьи личностные и профессиональные качества не всегда позволяют обеспечивать безопасный режим движения. Многие дорожно-транспортные происшествия (ДТП) происходят из-за неопытности, недобросовестности, невнимательности, а порой и по излишней самоуверенности водителей в своих профессиональных качествах.

Анализ причин ДТП позволяет свести их в следующие однородные по характеру группы:

- несоблюдение правил дорожного движения водителями, пешеходами и пассажирами;

- неправильный выбор водителями режимов движения;

- снижение психофизиологических функций участников дорожного движения;

- неудовлетворительное техническое состояние транспортных средств;

- неправильное размещение и крепление груза;

- неудовлетворительное устройство и содержание элементов дороги и дорожной обстановки;

- неудовлетворительная организация дорожного движения [1, с.15].

В каждой профессии можно выделить наиболее важные профессиональные качества. Так, для водителей автомобилей основными профессионально важными психофизиологическими функциями являются зрение, внимание, личностные качества, эмоциональная устойчивость и скорость реакции.

Физические, психологические и физиологические требования к водителям транспортных средств могут быть определены исходя из анализа его деятельности (рис. 1).

Водитель должен постоянно воспринимать большой объем информации о характере и режиме движения всех его участников, о состоянии и параметрах дороги, о состоянии окружающей среды и наличии средств регулирования, о состоянии узлов и агрегатов автомобиля. Водитель в процессе восприятия огромного потока информации должен не только обнаружить ее, но и переработать, провести анализ, принять соответствующее решение и на основании принятого решения произвести действия. Весь процесс от восприятия до совершения действия требует определенных затрат времени, которого зачастую может не хватить, если учесть быстроту изменения дорожно-транспортной ситуации. В этом случае водитель может совершить неправильные действия [1, с.20].


Одной из причин неправильных действий является отклонение психического состояния водителя от нормы во время движения. Сильные положительные или отрицательные эмоции могут резко изменять психофизиологические качества водителя, что, в конечном итоге, может привести к ДТП. Причины возникновения отрицательных эмоций можно свести к трем факторам: взаимоотношение с семьей, коллегами по работе, другими участниками движения. Если причиной эмоционального напряжения стала ссора в семье или с коллегами по работе, то снизить пагубное влияние отрицательных эмоций можно за счет переключения в деятельности или отсрочки выезда в рейс. В дорожных условиях борьба с последствиями отрицательных эмоций значительно усложняется, так как прогнозировать их возникновение практически невозможно и не всегда можно прервать рейс или хотя бы прекратить движение на сколько-нибудь продолжительное время.

Эмоции, как правило, повышают качество деятельности человека, однако сильное эмоциональное напряжение ведет к снижению производственных показателей, а сверхсильное может привести даже к прекращению производственной деятельности вообще.

Очень сильные положительные эмоции также не способствуют повышению надежности на дороге. При сверхсильных положительных эмоциях может наблюдаться очень серьезное нарушение в нервной регуляции сердечной деятельности, снижается уровень концентрации внимания водителя, растет время реакции, снижается адекватность оценки дорожной обстановки.

Для того чтобы снизить возможность попадания в аварийную ситуацию при сильных эмоциях, необходимо снизить скорость автомобиля, постараться мобилизовать внимание, а в отдельных случаях вообще остановить автомобиль, выйти из него и переключиться на другой вид деятельности [3, с.85].

Существует оптимум как физической, так и информационной нагрузки. Как однообразие, так слишком большое количество информации или физических движений ведет к быстрому развитию утомления.

Проблема снижения утомления или его предотвращение является одной из важнейших. При определенных условиях хроническое утомление или даже одиночное, но очень сильное может явиться причиной возникновения заболевания или даже гибели человека.

Утомление — временное снижение работоспособности, вызванное длительной или интенсивной работой [3, с.108]. Величину утомления нельзя измерять только объемом выполненной работы, так как на нее оказывают влияние производственный фактор, мастерство вождения, опыт, состояние здоровья, индивидуальные психофизиологические особенности водителя, режимы труда и отдыха. Каждый из этих факторов может оказать решающее влияние на величину и время возникновения утомления.

Существует три вида утомления: физическое, умственное и эмоциональное. У водителя они чаще всего возникают одновременно, так он сочетает физический труд с умственной деятельностью и большим эмоциональным напряжением.

Физические нагрузки на водителя с учетом постоянного совершенствования конструкций автомобилей постоянно снижаются. И все же резервы снижения утомляемости за счет созданий удобств и облегчения управления автомобилем, особенно грузовым или автобусом, все еще велики. Физически быстрее устает водитель при движении по бездорожью, заснеженным, скользким и горным дорогам, при продолжительном вождении, особенно в сложной дорожной обстановке. На улучшение физической подготовки водителей положительное воздействие оказывают занятия физическими упражнениями или подвижными видами спорта.

Умственное утомление быстрее наступает при длительном движении с высокой скоростью или в интенсивных транспортных потоках. Снизить этот вид утомления можно с помощью соблюдения определенного режима труда, правильного распределения времени работы и отдыха в течение смены.

Эмоциональное утомление вызывается отрицательными чувствами во время конфликтных или аварийных ситуаций, при движении в сложной дорожной обстановке, при нарушении Правил другими участниками движения. Большая роль в снижении воздействия отрицательных эмоций принадлежит самому водителю. Часть раздражающих сигналов он может попросту не воспринимать или, по крайней мере, не обращать на них излишнего внимания. Надо воспитывать в себе волю, умение подавлять вспышки раздражительности и гнева [4, с.102].

Проведенные в ФРГ исследования показали, если водитель работал в течение всей ночи, то его способность к безопасному управлению автомобилем резко снижается. Утомление, вызванное работой и бессонной ночью, по своему эффекту воздействия на организм водителя соответствует содержанию в крови алкоголя: от 0,6 до 0,8 промилле. Аналогичные изменения функционального уровня водителя могут наблюдаться и при болезни. Об этом необходимо помнить и стараться избегать управления автомобилем в этих состояниях [3, с.115].

Исследования показали, что преобладающими заболеваниями среди водителей являются: радикулит, грипп, респираторные острые заболевания, острые желудочно-кишечные заболевания, ангины, фурункулез.

В начальной стадии простудные заболевания и грипп проявляются в легком недомогании, головной боли и быстрой утомляемости. В этот период, у водителя наблюдается снижение психофизиологических качеств, связанных с управлением транспортным средством.

Водитель часто не информирует об ухудшении своего самочувствия, так как-либо умышленно скрывает его, либо недооценивает последствий своего недомогания, считая себя вполне работоспособным. Это же следует отнести и к физическим недостаткам водителя (недостаткам зрения, слуха и др.). Наибольшую опасность представляют водители, имеющие недостатки зрения.

Снижение работоспособности водителя может наступить в результате приема некоторых лекарственных средств перед рейсом или во время работы. Прием лекарств вечером перед сном может негативно повлиять на работоспособность водителя на следующий день.

Одним из наиболее важных факторов, определяющих работоспособность водителя, является предшествующий отдых. При неполноценном отдыхе возможны случаи, когда работоспособность водителя в течение всей рабочей смены не достигнет оптимального уровня. Очень сильно влияет на работоспособность само желание работать, т. е. уровень мотивации к деятельности.

Изменение графика работы по времени суток приводит к колебаниям работоспособности, связанной с установившимся ритмом жизни. Перед рейсом у водителей, работающих по новому суточному графику, может наблюдаться пониженная работоспособность и возрастать время врабатываемости.

Одной из причин аварийности на дорогах является управление автомобилем в нетрезвом состоянии.

К сожалению, опасен не только пьяный водитель за рулем. Отрицательное влияние алкоголя на функциональное состояние человека прослеживается в течение нескольких суток. Исследования на 30 здоровых добровольцах в возрасте 20–26 лет, проведенных советским ученым В. П. Латенковым (1985), показали, что употребление алкоголя, соответствующего средней степени опьянения, отрицательно сказывается на состоянии человека спустя 51 ч. после его приема. При более значительных дозах алкоголя его последствия в отдельных случаях наблюдаются до 10–15 дней [3, с.173].

Содержание алкоголя в крови и степень опьянения (по П. И. Новикову) представлены в табл. 1 [5, с.145].

Содержание алкоголя в крови и степень опьянения (по П. И. Новикову)

Содержание алкоголя в крови, ‰

Степень опьянения

В пределах физиологической нормы (вследствие процессов брожения в организме).

Читайте также: