Формула ксенона летучего водородного соединения

Добавил пользователь Валентин П.
Обновлено: 19.09.2024

Смоделируйте построение Периодической системы Д. И. Менделеева. Для этого подготовьте 20 карточек размером 6 х 10 см для элементов с порядковыми номерами с 1-го по 20-й. На каждой карточке укажите следующие сведения об элементе: химический символ, название, относительную атомную массу, формулу высшего оксида, гидроксида (в скобках укажите их характер – основный, кислотный или амфотерный), формулу летучего водородного соединения (для неметаллов).

Химический символ Название Относительная атомная масса Формула высшего оксида Формула высшего гидроксида Формула летучего водородного соединения
H Водород 1 H2O H2O
He Гелий 4
Li Литий 7 Li2O
(основный)
LiOH
(основный)
Be Бериллий 9 BeO
(амфотерный)
Be(OH)2
(амфотерный)
B Бор 11 B2O3
(кислотный)
H3BO3
(кислотный)
BH3
C Углерод 12 CO2
(кислотный)
H2CO3
(кислотный)
CH4
N Азот 14 N2O5
(кислотный)
HNO3
(кислотный)
NH3
O Кислород 16 H2O
F Фтор 19 HF
Ne Неон 20
Na Натрий 23 Na2O
(основный)
NaOH
(основный)
Mg Магний 24 MgO
(основный)
Mg(OH)2
(основный)
Al Алюминий 27 Al2O3
(амфотерный)
Al(OH)3
(амфотерный)
Si Кремний 28 SiO2
(кислотный)
H2SiO3
(кислотный)
SiH4
P Фосфор 31 P2O5
(кислотный)
H3PO4
(кислотный)
PH3
S Сера 32 SO3
(кислотный)
H2SO4
(кислотный)
H2S
Cl Хлор 35.5 Cl2O7
(кислотный)
HClO4
(кислотный)
HCl
Ar Аргон 40
K Калий 39 K2O
(основный)
KOH
(основный)
Ca Кальций 40 CaO
(основный)
Ca(OH)2
(основный)

Объяснение несоответствия относительных атомных масс аргона и калия.

Относительные атомные массы химических элементов это средние значения атомных масс изотопов элемента с учетом их долей содержания в природе.

Содержание в природе изотопа 39 K значительно больше, чем изотопа 40 K, поэтому среднее значение относительной атомной массы калия приближается к 39.

Содержание в природе изотопа 40 Ar значительно больше, чем изотопа 39 Ar, поэтому среднее значение относительной атомной массы аргона приближается к 40.

Калий является щелочным металлом, а аргон – инертным газом, поэтому аргон был расположен перед калием, т. е. в VIIIА группе, а калий – в IА группе.

№54 Ксенон

После того как были открыты гелий, неон, аргон и криптон, завершающие четыре первых периода таблицы Менделеева, уже не вызывало сомнений, что пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и не удивительно: в 1 м 3 воздуха всего лишь 0,08 мл ксенона. Рамзай совместно с Траверсом переработали около 100 т жидкого воздуха и получили 0,2 мл газа, который голубовато светился в электрическом разряде и давал своеобразный спектр с характерные спектральными линиями от оранжевой до фиолетовой области. Так был открыт новый инертный газ. Его назвали, ксеноном, что в переводе с греческого значит "чужой".

Получение:

Получают ректификацией жидкого воздуха. Хотя содержание ксенона в атмосфере крайне мало, именно воздух - практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый - потому, что почти весь ксенон возвращается в атмосферу.

Физические свойства:

Ксенон представляет собой тяжелый, редкий и пассивный газ, который при значительном охлаждении может быть переведен в жидкое и твердое состояние. Как и все инертные газы он не имеет цвета и запаха. При высоком давлении способен образовывать кристаллические гидраты. Растворяется в воде и органических растворителях. Ксенон обладает сравнительно хорошей электропроводностью.

Химические свойства:

Важнейшие соединения:

Дифторид ксенона XeF2, летучие кристаллы, имеет резкий специфический запах. Он образуется при действии электрического разряда на смесь ксенона и четырехфтористого углерода. Очень чистый XeF2 получается, если смесь ксенона и фтора облучить ультрафиолетом. Растворимость дифторида в воде невелика, однако раствор его - сильнейший окислитель. Постепенно окисляет воду, образуя ксенон, кислород и фтористый водород; особенно быстро реакция идет в щелочной среде. Тетрафторид ксенона XeF4, вполне устойчивое соединение, молекула его имеет форму квадрата с ионами фтора по углам и ксеноном в центре. Кристаллическое вещество, во влажном воздухе взрывоопасен. Гидролизуется в воде с образованием оксида ксенона ХеО3. Тетрафторид ксенона фторирует ртуть:
XeF4 + 2Hg = Хе + 2HgF2.
Платина тоже фторируется этим веществом, но только растворенным во фтористом водороде.
Гексафторид ксенона XeF6, крист. вещество, чрезвычайно активен и разлагается со взрывом. Гидролизуется с образованием оксофторидов и оксида ксенона(VI), с растворами щелочей диспропорционирует, образуя перксенаты. Он легко реагирует с фторидами щелочных металлов (кроме LiF), образуя соединения типа CsF*XeF6
Гексафторплатинат ксенона XePtF6 твердое оранжево-желтое вещество. При нагревании в вакууме XePtF6 возгоняется без разложения, в воде гидролизуется, выделяя ксенон:
2XеPtF6+6H2O = 2Xe+РtO3 + 12HF
Существует также соединение Xе[PtF6]2. Аналогичные соединения ксенон образует с гексафторидами рутения, родия и плутония.
Оксид ксенона(VI) , бесцветные, расплывающиеся на воздухе кристаллы. Молекула ХеО3 имеет структуру приплюснутой треугольной пирамиды с атомом ксенона в вершине. Это соединение крайне неустойчиво; при его разложении мощность взрыва приближается к мощности взрыва тротила. Растворим, сильный окислитель.
Ксенаты соли ксеноновой кислоты - H2ХеO4, растворимы, в щелочной среде разлагаются на ксенон и перксенаты. Окислители, взрывоопасны.
Оксид ксенона(VIII) Молекула ХеО4 построена в виде тетраэдра с атомом ксенона в центре. Вещество это нестойко, при температуре выше 0°С разлагается на кислород и ксенон. Иногда разложение носит характер взрыва.
Перксенаты соли перксеноновой кислоты - H4ХеO6, кристаллич., устойчивы до 300°С, нерастворимы. Самые сильные из известных окислителей.

Применение:

В светотехнике признание получили ксеноновые лампы высокого давления. В таких лампах светит дуговой разряд в ксеноне, находящемся под давлением в несколько десятков атмосфер. Свет в ксеноновых лампах появляется сразу после включения, он ярок и имеет непрерывный спектр - от ультрафиолетового до ближней области инфракрасного. Ксеноновые лампы применяются во всех случаях, когда правильная цветопередача имеет решающее значение: при киносъемках и кинопроекции, при освещении сцены и телевизионных студий, в текстильной и лакокрасочной промышленности.
Ксеноном пользуются и медики - при рентгеноскопических обследованиях головного мозга. Как и баритовая каша, применяющаяся при просвечивании кишечника, ксенон сильно поглощает рентгеновское излучение и помогает найти места поражения. При этом он совершенно безвреден.
Радиоактивный изотоп элемента № 54, ксенон-133, используют при исследовании функциональной деятельности легких и сердца.
В виде фторидов ксенона удобно хранить и транспортировать и дефицитный ксенон, и всеразрушающий фтор. Соединения ксенона используются также как сильные окислители и фторирующие агенты.

Ксенон

Содержание

  • 1 История
    • 1.1 Происхождение названия
    • 2.1 В Солнечной системе
    • 2.2 Земная кора
    • 4.1 Физические свойства
    • 4.2 Химические свойства
    • 4.3 Изотопы

    Ксенон

    История

    Открыт в 1898 году британскими учёными Уильямом Рамзаем и Морисом Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. Ксенон был обнаружен как небольшая примесь к криптону. За открытие инертных газов (в частности ксенона) и определение их места в периодической таблице Менделеева Рамзай получил в 1904 году Нобелевскую премию по химии.

    Происхождение названия

    Распространённость

    Ксенон — весьма редкий элемент. При нормальных условиях в кубометре воздуха содержится 0,086—0,087 см 3 ксенона.

    В Солнечной системе

    Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли , хотя содержание изотопа 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. В атмосфере Юпитера, напротив, концентрация ксенона необычно высока — почти в два раза выше, чем в фотосфере Солнца.

    Земная кора

    Ксенон содержится в земной атмосфере в крайне незначительных количествах, 0,087 ± 0,001 миллионной доли по объёму (мкл/л), или 1 часть на 11,5 млн. Он также встречается в газах, выделяемых водами некоторых минеральных источников. Некоторые радиоактивные изотопы ксенона, например 133 Xe и 135 Xe, получаются в результате нейтронного облучения ядерного топлива в реакторах.

    Определение

    Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии с длиной волны 467,13 нм и 462,43 нм ). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.

    Свойства

    Физические свойства

    Ксенон

    При нормальном давлении температура плавления 161,40 К (−111,75 °C), температура кипения 165,051 К (−108,099 °C). Молярная энтальпия плавления 2,3 кДж/моль , молярная энтальпия испарения 12,7 кДж/моль , стандартная молярная энтропия 169,57 Дж/(моль·К) .

    Плотность в газообразном состоянии при стандартных условиях (0 °C, 100 кПа ) 5,894 г/л (кг/м 3 ), в 4,9 раза тяжелее воздуха. Плотность жидкого ксенона при температуре кипения 2,942 г/см 3 . Плотность твёрдого ксенона 2,7 г/см 3 (при 133 К ), он образует кристаллы кубической сингонии (гранецентрированная решётка), пространственная группа Fm3m, параметры ячейки a = 0,6197 нм , Z = 4 .

    Критическая температура ксенона 289,74 К (16,59 °C), критическое давление 5,84 МПа , критическая плотность 1,099 г/см 3 .

    Тройная точка: температура 161,36 К (−111,79 °C), давление 81,7 кПа , плотность 3,540 г/см 3 .

    В электрическом разряде светится синим цветом (462 и 467 нм). Жидкий ксенон является сцинтиллятором.

    Ксенон

    Слабо растворим в воде (0,242 л/кг при 0 °C, 0,097 л/кг при 25 °C).

    При стандартных условиях (273 К, 100 кПа): теплопроводность 5,4 мВт/(м·К) , динамическая вязкость 21 мкПа·с , коэффициент самодиффузии 4,8·10 −6 м 2 /с , коэффициент сжимаемости 0,9950, молярная теплоёмкость при постоянном давлении 20,79 Дж/(моль·К).

    Ксенон диамагнитен, его магнитная восприимчивость −4,3·10 −5 . Поляризуемость 4,0·10 −3 нм 3 . Энергия ионизации 12,1298 эВ .

    Химические свойства

    Ксенон стал первым инертным газом, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие.

    Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 году. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.

    В настоящее время описаны фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).

    Изотопы

    Известны изотопы ксенона с массовыми числами от 108 до 147 (количество протонов 54, нейтронов от 54 до 93), и 12 ядерных изомеров.

    9 изотопов встречаются в природе. Из них стабильными являются семь: 126 Xe, 128 Xe, 129 Xe, 130 Xe, 131 Xe, 132 Xe, 134 Xe. Еще два изотопа ( 124 Xe и 136 Xe) имеют огромные периоды полураспада, много больше возраста Вселенной.

    Остальные изотопы искусственные, самые долгоживущие — 127 Xe (период полураспада 36,345 суток) и 133 Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов. Среди ядерных изомеров наиболее стабильны 131 Xe m с периодом полураспада 11,84 суток, 129 Xe m (8,88 суток) и 133 Xe m (2,19 суток).

    Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ, его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и йода-135 приводит к эффекту так называемого отравления ксеноном (см. также Иодная яма).

    Получение

    Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

    Из-за своей малой распространённости ксенон гораздо дороже более лёгких инертных газов. В 2009 году цена ксенона составляла около 20 евро за литр газообразного вещества при стандартном давлении.

    Ксенон, свойства атома, химические и физические свойства.













    131,293(6) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6

    Атом и молекула ксенона. Формула ксенона. Строение атома ксенона:

    Ксенон – неметалл. Относится к группе инертных (благородных) газов.

    Ксенон обозначается символом Xe.

    Как простое вещество ксенон при нормальных условиях представляет собой инертный одноатомный газ без цвета, вкуса и запаха.

    Молекула ксенона одноатомна.

    Химическая формула ксенона Xe.

    Электронная конфигурация атома ксенона 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 . Потенциал ионизации (первый электрон) атома ксенона равен 1170,35 кДж/моль (12,1298436(15) эВ).

    Строение атома ксенона. Атом ксенона состоит из положительно заряженного ядра (+54), вокруг которого по пяти оболочкам движется 54 электрона. При этом 46 электронов находятся на внутреннем уровне, а 8 электронов – на внешнем. Поскольку ксенон расположен в пятом периоде, оболочек всего пять. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья и четвертая – внутренние оболочки представлены s-, р- и d-орбиталями. Пятая – внешняя оболочка представлена s- и р-орбиталями. На внешнем энергетическом уровне атома ксенона на 5s-орбитали находятся два спаренных электрона, на 5p-орбитали находятся шесть спаренных электрона. В свою очередь ядро атома ксенона состоит из 54 протонов и 77 нейтронов. Ксенон относится к элементам p-семейства.

    Радиус атома ксенона (вычисленный) составляет 108 пм.

    Атомная масса атома ксенона составляет 131,293(6) а. е. м.

    Содержание ксенона в земной коре составляет 2,0×10 -9 %, в морской воде и океане – 5,0×10 -10 %.

    И лишь на метеоритах количество ксенона было нормальным — совпадающим с предсказанным.


    Процесс получения Xe2O6H6 (такая пара образует молекулу нового соединения) группой Кристеля Санлопа. (Иллюстрация Sanloup et al. / University of Edinburgh.)


    Постепенно стала вызревать такая мысль: при сверхвысоких температурах и давлениях ксенон, при всей своей инертности, возможно, всё-таки вступает в реакции с другими элементами. В 1997 году была предпринята попытка получить соединение железа с ксеноном при условиях, теоретически существующих в земных глубинах. Ничего из этого не вышло; провалились и попытки искусственно связать его в кварце. В конце концов, был получен оксид ксенона, но ни условия его формирования, ни стабильность не позволяли чётко заявлять, что именно так был связан весь земной ксенон.

    Кроме того, на том же Юпитере необходимые количества свободного кислорода довольно трудно себе представить — а ксенон там всё равно в явном дефиците.

    Давление и температура были выбраны не с потолка: таковы, предположительно, реальные условия в недрах планет вроде Урана и Нептуна. Между тем именно атмосферы Урана и Нептуна не имеют пока точной количественной оценки содержания ксенона, поэтому, если их глубины таковы, то, как предсказывают исследователи, обе планеты испытывают тот же дефицит, что и Марс, Земля и Юпитер, а не сравнительное изобилие ксенона, как на метеоритах.


    Могут ли внутри Нептуна существовать условия для образования таких соединений? (Иллюстрация JPL / NASA.)


    Глава группы подчёркивает: именно скорость распада изотопов ксенона часто используется для датировки тех или иных событий истории Земли, при этом сам ксенон априорно считается инертным. То есть предполагается, что химические процессы не влияют на скорость потери ксенона анализируемым образцом. Поскольку теперь совершенно ясно, что ксенон может образовывать соединения и с кислородом, и с кислородом и водородом, его применение в геохронологии придётся доработать.

    Читайте также: