Электронный стартер для люминесцентных ламп своими руками

Добавил пользователь Алексей Ф.
Обновлено: 19.09.2024

Стартер и дроссель - это два наиболее важных компонента в конструкции люминесцентной лампы с электромагнитным ПРА. В этой статье я расскажу как устроены и каким образом работают эти элементы.

Устройство стартера и дросселя

Конструктивно стартер представляет из себя стеклянную колбу, внутренний объем которой заполнен инертным газом. В эту запаянную область также вмонтированы два электрода, причем один из них или же оба имеют специальную биметаллическую пластину и вся эта конструкция помещена в защитный корпус (чаще всего из пластика).

При этом данные изделия выпускаются на 110 В и 220 В.

Также обязательным элементом любого стартера является конденсатор, обеспечивающий снижение импульса, который образуется во время размыкания контактов, а также увеличивает его продолжительность.

А дроссель, по своей сути, самая обычная катушка индуктивности с ферромагнитным сердечником.

Как запускается люминесцентная лампа

Итак, теперь давайте подробно разберем алгоритм включения лампочки, и какую роль при этом играют дроссель и стартер.

Сразу по факту подачи напряжения на светильник начинает работать стартер, то есть все напряжение уходит на его контакты.

Поэтому на пластинах возникает эффект тлеющего разряда (величина тока в 30- 50 мА), который разогревает электроды из биметаллического материала и под действием температуры они изгибаются.

Изгибающиеся пластины замыкают цепь и теперь по ней протекает ток, начинающий разогревать электроды, находящиеся в лампе. Причем величина этого тока ограничивается дросселем.

Это происходит до того момента пока они не разогреются до 800 - 900 градусов по Цельсию. В результате этого процесса возрастает электронная эмиссия, которая значительно облегчает пробой газового промежутка.

В это же время электроды стартера остывают (потому что теперь там нет тлеющего разряда, ранее нагревавшего их) и биметаллическая пластина начинает возвращаться в исходное состояние.

И в тот самый момент когда контакты разрываются в дросселе возникает ЭДС самоиндукции с повышенным напряжением, достигающим 1 кВ, которое в виде импульса прикладывается к лампе.

А так как до этого электроды были предварительно разогреты, то происходит пробой газа и лампочка начинает светиться.

Теперь, когда лампа светится, через стартер проходит лишь половина первоначального уровня напряжения, а этого недостаточно чтобы вновь запустить работу стартера.

Таким образом, зная как протекает весь процесс, можно точно сказать какие задачи исполняют стартер и дроссель.

Какие задачи исполняют стартер и дроссель

Итак, стартер служит для:

1. Замыкания цепи и для предварительного прогрева электродов лампы с целью обеспечить более легкий процесс розжига лампы.

2. Разрывает цепь после успешного прогрева электродов и тем самым провоцирует образование ЭДС самоиндукции в дросселе с повышенным напряжением, который и запускает процесс свечения лампы.

А у дросселя уже три функции:

1. Выполняет функцию ограничителя тока при замыкании контактов стартера.

2. Выполняет роль генератора импульса высокого напряжения (в момент размыкания контактов стартера).

3. И играет функцию стабилизатора горения дугового разряда в период работы люминесцентной лампы освещения.

Заключение

Это все, что я хотел вам рассказать о назначении стартера и дросселя, а также каким образом они запускают процесс свечения в люминесцентной лампе. Если статья оказалась полезной, то оцените ее. Спасибо за ваше внимание!

Ищу схему электронного аналога обычного стартера лампы дневного света. Чтобы был по размерам не больше обычного и позволял настроить порог срабатывания.

_________________
если рассматривать человека снизу, покажется, что мозг у него глубоко в жопе
при взгляде на многих сверху ничего не меняется.
скушно, бабоньки!

_________________
- Не шалю, никого не трогаю, починяю примус, - недружилюбно насуплившись, проговорил кот, - и ещё считаю долгом предупредить, что кот древнее и неприкосновенное животное.
М.Булгаков

JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!

Прежде всего предложенные ссылки меня не устраивают потому, что они на 100% не соответствуют моей просьбе - мне не нужен электронный балласт! Мне нужна замена той пупочки на двух ножках, которая втыкается в обычные светильники с ЛДС и обеспечивает поджиг лампы.
Обычный стартер - это своего рода неонка с биметаллическими контактами, которые при свечении нагреваются и замыкаются, а потом остывают и размыкаются, но после зажигания ЛДС неонка эта уже не светится, т.к. напряжение на ней ниже порога зажигания. Именно этот порог мне и надо регулировать.
Я знаю, что электронные стартеры существуют, но вот схемы нигде не встречал. По идее там должен стоять двуханодный динистор или симистор, но хотелось бы найти готовое решение, а не ковыряться и экспериментировать.

_________________
если рассматривать человека снизу, покажется, что мозг у него глубоко в жопе
при взгляде на многих сверху ничего не меняется.
скушно, бабоньки!

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Опубликованы материалы вебинара, посвященного решениям задач освещения с LED-драйверами MEAN WELL. LED-драйверы MEAN WELL насчитывают несколько десятков семейств, которые широко используются, и легко интегрируются в различные светодиодные светильники. На вебинаре были представлены новинки 2022 года. Рассказали о драйверах MEAN WELL, существующих режимах стабилизации, способах повышения устойчивости светильника к имеющимся помехам, а также предложили оптимальные семейства для различных отраслей применения.

там ещё много. поисковики рулят.

_________________
- Не шалю, никого не трогаю, починяю примус, - недружилюбно насуплившись, проговорил кот, - и ещё считаю долгом предупредить, что кот древнее и неприкосновенное животное.
М.Булгаков

Для надежной работы в жестких условиях компания Mornsun предлагает лучшие в своем классе AC/DC-преобразователи концепции 305RAC, которые не только соответствуют стандартам класса B по уровню электромагнитного излучения, но и немного их превосходят.

Первая ссылка - это то, что надо, схемку бы. А второе не катит, т.к. требует нестандартной схемы включения - это скорее схема питания ЛДС, а не схема самого стартера. Стартер - двухполюсник.

_________________
если рассматривать человека снизу, покажется, что мозг у него глубоко в жопе
при взгляде на многих сверху ничего не меняется.
скушно, бабоньки!

Первая ссылка - это то, что надо, схемку бы. А второе не катит, т.к. требует нестандартной схемы включения - это скорее схема питания ЛДС, а не схема самого стартера. Стартер - двухполюсник.


После праздников могу посмотреть марку электронного стартера. У нас в стране вроде делалась такая штука, вот только не помню- была ли там регулировка поргоа.

Сэр Мурр, "Электронный стартёр советских времён" - фактически тот же ЭПРА. Насколько целесообразна замена в электромагнитной пусковой системе обычного газоразрядного стартёра на его электронный эквивалент? Я думаю, что лучший выход - ЭПРА, по целому ряду характеристик. А по цене тем более - стоит ли копеечный стартёр менять на электронный, который стоит на порядок дороже, а качественного скачка в принципе никакого.

_________________
Память очень интересная штука: бывает так, что запомнишь одно, а вспомнишь другое.

КР1182КП2- трёхногий электронный стартер. К управляющему выводу подключается конденсатор, регулирующий момент открывания стартера.
О целесообразности его применения судить не берусь. Был задан вопрос- дан ответ.

Так и есть. Но человек спрашивал именно аналог стартера.

Спасибо, похоже, микросхемка КР1182КП2 - самое оно.

Что касается активного пропагандирования электронных балластов - давайте посчитаем, Ок?

Итак, исходные данные: сравниваем обычную лампу 60Вт за 7 рублей и 2 экономичных по 15Вт по 75 рублей штука. Две экономичных потому, что ИМХО, субъективно они вдвоем светят еле-еле так же, как одна накальная 60Вт. Цена 1 кВт-часа 1,65р (все цены наши местные).
Принимаем, что лампы светятся по 6 часов в сутки. Копейки округляем.

Расчет:
1. Накальная лампа за 2376 часов свечения сожрет 143 кВт-ч на сумму 236 рублей. С учетом ее цены затраты составят 243 рубля в год.
2. Экономичные лампы сожрут 72 кВт-ч на сумму 118 рублей. С учетом их цены затраты в год составят 150+118=268 рублей.
3. "Экономия" от применения энергосберегающих ламп за год составит 243-268=-25 рублей.

Выводы.
1. В год никакой экономии нет абсолютно, одни убытки.
2. Ни разу в моей практике экономичная лампа не отработала заявленные 10000 часов, максимум ее хватало на 4 месяца. А накальные лампы в моей практике сгорают примерно раз в 9 месяцев в среднем, т.е. год продержаться может вполне.
3. Если допустить, что эконолампа все же отработает свой срок - мы принесем массу пользы Чубайсу, а себе одни вред - обнаружив спад потребления (т.е. уменьшение прибыли) он более активно станет навинчивать цену на электроэнергию для "компенсации недополученной прибыли".
4. Если поверить, что эконолампа 15Вт светит так же, как 60Вт накальная, то экономия в год составит всего чуть больше сотни. Это действительно сумма, ради которой стоит разводить базар! "Купите у нас этот удивительный станок для производства зубочисток всего за 1000$ и мы вам подарим бесплатно целую упаковку уже изготовленных зубочисток!"
5. Утилизация эконоламп - это экологическая катастрофа, т.к. у нас ртуть-содержащие лампы нигде не принимают, а значит, ртуть мы выкидываем в нашу природу, а потом ее парами сами дышим.
6. Кому это выгодно? Тут спросите у одного нашего завсегдатая темы про "ПиАр и грязные технологии" - он вам расскажет, кому это выгодно.

_________________
если рассматривать человека снизу, покажется, что мозг у него глубоко в жопе
при взгляде на многих сверху ничего не меняется.
скушно, бабоньки!

Насчёт экономии- вопрос спорный. У нас на работе напряжение в сети немного завышено. В комнате две трёхрожковых люстры. За неделю сгорает минимум одна лампа. Света не хватает.
Поставили вместо накаливания энергосберегающие. Света стало с избытком. Пока ни одна лампа не накрылась. Я доволен.
В подвальной мастерской тоже заменили все люминисцентные лампы на энергосберегающие. Нареканий и моргания света не наблюдается.
Но есть минус- при открытой форточке лампы интенсивно охлаждаются и ощутимо теряют яркость свечения.

Как я уже говорил в указанной теме - "энергосберегающие"- это те же ЛЛ, но с ЭПРА. Одно из основных преимуществ - отсутствие мерцания. Про это тоже говорится в упомянутых темах. Насчёт зависимости яркости от холода - это скорее всего связано не с самой лампой, а с температурной зависмостью элементов ЭПРА. И про это в тех темах тоже есть.

_________________
Память очень интересная штука: бывает так, что запомнишь одно, а вспомнишь другое.

"Я никогда не полюблю!" (из другой мелодрамы)
Расчет:
1. Накальная лампа за 2376 часов свечения сожрет 143 кВт-ч на сумму 236 рублей. С учетом ее цены затраты составят 243 рубля в год.
2. Экономичные лампы сожрут 72 кВт-ч на сумму 118 рублей. С учетом их цены затраты в год составят 150+118=268 рублей.
3. "Экономия" от применения энергосберегающих ламп за год составит 243-268=-25 рублей.
Выводы.

_________________
Память очень интересная штука: бывает так, что запомнишь одно, а вспомнишь другое.

Повторяю: возможно мне крупно не повезло в жизни, но из 12 купленных мною за 3 года "экономичных" лампочек ни одна не прослужила больше 4 месяцев! Первые я покупал еще по 240 рублей, последние куплены 1,5 месяца назад по 75 - еще горят пока (я их и не считал в общем количестве). Так что личный опыт меня убеждает гораздо больше, чем 1000 теоретических расчетов заинтересованных лиц.
Вас, мышонок, я не считаю заинтересованным лицом в силу многих причин - скорее, вам просто повезло с лампочками
А на счет моих выводов - кроме "экономии" ведь там есть и другие. Как на счет них?

_________________
если рассматривать человека снизу, покажется, что мозг у него глубоко в жопе
при взгляде на многих сверху ничего не меняется.
скушно, бабоньки!

Случайно надыбал, когда шастал по Сети и вспомнил, что так никто ничего и не посоветовал. Лучше поздно, чем никогда.

_________________
Выслушай и противную сторону, даже если она и противна

Изображение

Я сделал!
т.к. КР1182КП2-вещь у нас дефицитная и дорогая(в Чипе-65руб), решил сделать ее аналог. Поместил в корпус от совецкого стартера.
Использовал диак DB3 и симистор BT131-600(TO-92).
Включается 7 раз из 8 . Зато намного быстрее и без звука
Схема КП2 : Моя схема:

Вложения:
Комментарий к файлу: Мой стартер
Изображение 001.jpg [7.27 KiB]
Скачиваний: 1621
Комментарий к файлу: Моя схема
Starter2.GIF [4.07 KiB]
Скачиваний: 1516
Комментарий к файлу: Оригинальная схема
оригинальная схема.GIF [4.8 KiB]
Скачиваний: 1477

Изображение

Кстати, к вопросу о готовых изделиях:

Мои самые лучшие рекомендации, реально продлевает срок службы даже самым хреновым лампам на самых совковых балластах. Стабильный предпрогрев, никаких миганий, отключение неисправной лампы – само собой.

У меня мой самодельный стартер работает только в с УБЕ:( Причем только в сдвоеных (в противофазе) и при наличии второго стартера(не любого)

Последний раз редактировалось 1995kenny Сб янв 03, 2009 19:20:40, всего редактировалось 1 раз.


Насчёт этого к сожалению не знаю, но вот электронные балласты точно везде продаются, а они ещё лучше по свойствам.


Как ни парадоксально, лампы с ЭМПРА и обычным биметаллическим стартером служат существенно дольше, чем от импульсных ПРА. Исключение - импульсные ПРА с предварительным прогревом спиралей (hot start). Но их в обычных лавках не купишь. А те, что стоят 3-4$, - отстой имени Ройера.
Недостаток ЭМПРА - мерцающий свет ламп, ну и тяжелый дроссель, если он втыкается в розетку (wall cube). А так - G23 - самый известный формат для настольных ламп, в несколько раз чаще встречается, чем, скажем, 2G7 с импульсной ПРА.

Часовой пояс: UTC + 3 часа

Кто сейчас на форуме

Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Русская поддержка phpBB
Extended by Karma MOD © 2007—2012 m157y
Extended by Topic Tags MOD © 2012 m157y

Электронный балласт (ЭПРА) служит для запуска и поддержания свечения газорязрядных ламп. ЭПРА вы можете увидеть внутри энергосберегающих ламп,в светильниках, где применяются бактерицидные или люминисцентные лампы.Электронный балласт заменил собой громоздкие пускорегулирующие аппараты(ПРА),которые выполнены на большом дросселе,стартере и конденсаторе.У громоздкого ПРА есть недостатки:частота на лампу поступает 50 Гц,из-за этого у лампы есть стробоскопический эффект,она попросту мигает.Срок службы ламп с ПРА меньше а потребляемый ток от сети больше.Этого нет у легкого и компактного ЭПРА.

Собрал на отдельных деталях электронный балласт,чтобы разобраться,как это примерно работает.Детали взял с балласта на 15 Вт,схему начертил по печатным проводникам платы.

Собранный балласт оказался рабочим и вот его схема.На четырех диодах и С1 собран выпрямитель,который выпрямляет переменное напряжение сети 220В до постоянного примерно 310В. Резистор на 8 Ом служит предохранителем и как ограничитель зарядного тока С1. На резисторе R1, С5 и динисторе DB3 собрано устройство для запуска преобразователя,который выполнен на двух транзисторах 13003.Это двухтактный полумостовой преобразователь,транзисторы которого переключаются благодаря двум управляющим обмоткам трансформатора,которые намотаны в противофазе.Как только на конденсаторе С5 напряжение достигнет примерно 30 Вольт,динистор пробивается и подает положительный импульс на транзистор Т2. Этого импульса достаточно для запуска генератора,далее динистор исключается из работы,для этого служит диод D5,который шунтирует конденсатор C5.

Дроссель ДР и конденсаторы С6-С7 служат как последовательный резонансный контур,который увеличивает напряжение для поджига лампы.Как только подается питание на устройство,на конденсаторе С6 будет напряжение составляющее сотни Вольт.Это напряжение пробивает газ в лампе и она начинает светить.Между спиралями лампы,когда она светит, появляется небольшое сопротивление,которое шунтирует C6 и резонанс прекращается.Далее дроссель ограничивает высокочастотный ток через лампу и лампа выходит в рабочий режим.Демпферный диоды находятся в самих транзисторах,они защищают их от импульсов обратного напряжения.Для этой же цели стоит конденсатор С2 и резистор R2.

Люминесцентные лампы, они же лампы дневного света, они же ЛДС известны всем. Они экономичнее ламп накаливания почти в 5 раз,дают более естественный, мягкий свет и излучают более мощный световой поток. Единственными их недостатками являются более высокая стоимость (что, впрочем, компенсируется увеличенным в 10-15 раз сроком службы в сравнении с лампой накаливания) и более сложная схема подключения. Стоимость, как уже было сказано компенсируется экономичностью и долговечностью, а схему мы сейчас детально рассмотрим и сможем подключать ее и даже устранять некоторые неисправности самостоятельно.

В общих чертах подключение люминесцентных ламп показано на рисунке 1. Как видно из него, ЛДС, в отличие от обычных ламп накаливания, включаемых непосредственно в сеть, через некое устройство, называемое пускорегулирующим, а попросту балластом. О секретах этого балласта – его устройстве, подключении, возможных неисправностях мы и будем разговаривать в сегодняшнем материале.

Подключение люминесцентной лампы

Схема электронного балласта для люминесцентной лампы

Как и сами люминесцентные лампы, пускорегулирующие устройства для них различаются по размерам, мощности, а также некоторыми особенностями конструкции. Как габариты, так и мощность зависят от типа ламп, для работы с которыми предназначен тот или иной балласт. Так, например, если в лампах классической конструкции (рис. 1) размер не критичен, то в компактных люминесцентных лампах (КЛЛ), балласт размещенный между цоколем и колбой лампы, просто обязан быть компактным (рис. 2)

Несмотря на эти различия, в целом работают они по одному и тому же принципу, который понятен из схемы, приведенной на рисунке 3.

Структурная схема электронного балласта

Давайте разберем, для чего служит каждый из модулей, обозначенных на этой схеме. Первым у нас идет фильтр электромагнитных помех, который, как ясно из названия, убирает помехи, излучаемые балластом и мешающие работе других устройств. Кстати, следует отметить, что на работу самого балласта наличие/отсутствие этого фильтра не влияет, он предназначен для защиты от помех электроприборов, расположенных в непосредственный близости от него, из-за чего некоторые недобросовестные производители, в целях экономии могут просто выпускать пускорегулирующие устройства без этого фильтра. Поэтому приобретать балласт для люминесцентных ламп рекомендуется только у проверенных производителей.

Далее за фильтром помех следует выпрямитель, собранный по обычной мостовой схеме, и предназначенный для выпрямления переменного тока. Дело в том, что если запитать нашу лампу током сетевой частоты (50 Гц), то сама лампа может мерцать, а дроссель балласта издавать неприятный звук, что не просто доставляет дискомфорт, но также повышает утомляемость и может вызывать головную боль, поэтому питать нашу лампу мы будем током высокой частоты (35-40 кГц т.е 35-40 тысяч колебаний в секунду). Где связь между постоянным током и током такой высокой частоты (который по своей сути все-таки является переменным)? Все просто – такой ток может создать только генератор высокой частоты, который представляет собой электронное устройство и питается постоянным током.

За выпрямителем у некоторых моделей установлен корректор коэффициента мощности, предназначенный для снижения реактивной мощности. Что же это за мощность такая? сейчас разберем. Полная мощность любого электропотребителя делится на 2 слагаемых – это мощность активная (то есть полезная) и реактивная. Наглядно показано это на рисунке 4.

Рис.4 Полная мощность любого электропотребителя делится на 2 слагаемых – это мощность активная (то есть полезная) и реактивная

Из рисунка видно, что часть полной мощности забирают бесполезные потери на нагрев и излучение, которые можно снизить, зная причины возникновения и природу реактивной мощности. В данной схеме реактивная мощность появляется из-за наличия индуктивной нагрузки (дросселя), по вине которого происходит сдвиг фаз по току и напряжению. Вообще, возникновение реактивной мощности возможно только в цепях переменного тока и только при использовании индуктивных или емкостных нагрузок. Причем на индуктивных нагрузках происходит отставание тока по фазе, а на емкостных – наоборот – опережение (рисунок 5), сама же реактивная мощность рассчитывается по формуле, приведенной на рис.6.

То есть для уменьшения реактивной мощности нам нужно всего лишь уменьшить угол сдвига. Как уже говорилось, на индуктивных нагрузках наблюдается отставание тока, а на емкостных – опережение. Так как наша нагрузка индуктивная, то для компенсации сдвига, нам нужно просто добавить конденсаторы рассчитанной емкости, из которых, собственно и состоит блок коррекции мощности данного балласта.

За блоком коррекции мощности следует фильтр постоянного тока. Так как для выпрямления тока используется обычный мостовой выпрямитель, то напряжение на выходе будет пульсирующим. Сгладить его помогает конденсатор большой емкости.

Далее сглаженное напряжение попадает в инвертор. Он преобразует постоянный ток в переменный ток высокой частоты. Высокочастотный ток подается уже непосредственно на лампу.

В некоторых более дорогих моделях пускорегулирующих устройств предусмотрена обратная связь, то есть контроль наличия лампы. Такая связь не даст устройству запуститься при сгоревшей или отсутствующей лампе, что важно, так как импульсные источники питания недопустимо включать без нагрузки. Разобравшись с назначением каждого блока, давайте теперь рассмотрим его принципиальную электрическую схему (рис.7).

Электрическая схема электронного балласта

Здесь, как мы видим, фильтр электромагнитных помех, выпрямитель и фильтр постоянного тока объединены в один блок. Далее следует генератор высокой частоты и индуктивный балласт (дроссель). Его назначение – ограничивать ток, подаваемый на лампу, в противном случае тлеющий разряд в ней может перейти в плазменную электрическую дугу. Данная схема может несколько отличаться (особенностью конструкции, либо параметрами элементов) от иных схем, но в целом принцип их работы одинаков.

Принцип работы люминесцентных ламп

Глядя на вышеприведенную схему можно удивиться: зачем такие сложности, чтобы включить обычную лампочку? Но удивление проходит сразу после знакомства с принципом работы ЛДС. Все дело в том, что лампочка-то не совсем обычная, свет в ней излучает не раскаленная нить, как в лампе накаливания, а тлеющий разряд в газовой атмосфере. Люминесцентная лампа представляет собой трубку из кварцевого стекла, покрытую слоем люминофора (вещество, преобразующее поглощаемую им энергию в свет). Лампа заполнена смесью паров ртути и инертного газа. С торцов ее смонтированы катоды, представляющие собой нити накала (разогрев нитей происходит при запуске лампы). В момент запуска, нити разогреваются, излучая свободные электроны, под воздействием которых в лампе возникает тлеющий разряд, вызывающий свечение люминофора (рис. 8).

Запуск электронного балласта изнутри

На рисунке мы видим общее устройство лампы и поведение ее в момент запуска через электронный балласт. Теперь, узнав, как работает сама лампа, балласт, и для чего этот балласт нужен, стоит рассмотреть вопрос как быть, если лампа вдруг перестала работать. Скажу сразу – отремонтировать можно, как балласт, так и саму лампу. Скажу более – такую лампу можно запустить даже если она перегорела. Способы ремонта мы сейчас как раз и рассмотрим.

Проверка балластов люминесцентных ламп и их ремонт

Но в любом ремонте самое сложное – не сам ремонт, а диагностика. Любая диагностика начинается с проверки менее сложных и трудноустранимых причин, постепенно переходя ко все боле и более сложным. Так при поиске неисправностей в ЛДС, в первую очередь проверяется сама лампа путем замены на заведомо рабочую. Если это ни к чему не привело, следует проверить сам балласт. Самый простой способ – замкнуть между собой контакты, подключаемые к нитям накала ламп и подключить туда обычную лампу накаливания, как показано на схеме (рис. 9), а для тех кто читать схемы еще только учится, предлагаем более наглядное фото (рис. 10).

Проверка балласта

Если лампа горит, значит балласт работает и причину неисправности следует искать в лампе, если же лампа не загорается, значит балласт вышел из строя. Для обнаружения неисправности первым делом стоит разобрать корпус балласта и произвести визуальный осмотр. В случае обнаружения ярко выраженных следов перегорания деталей (рис. 11), либо сильного запаха гари, чинить этот балласт смысла не имеет.

Следы перегорания деталей на плате электронного балласта

Если же визуально детали целые, а запаха гари нет, то стоит обратить внимание на дорожки печатной платы. При обнаружении обрыва, устраняем эту неисправность путем припаивания куска обычного изолированного провода к любой из точек каждого участка оборванной дорожки. Также стоит подключить к проверяемому балласту рабочую лампу и посмотреть в темноте на ее поведение. В случая слабого накала нитей, причина в пробое одного из конденсаторов, соединяющих нити лампы. Если все эти проверки ни к чему не привели – вышел из строя один из электронных компонентов схемы. В первую очередь обращаем внимание на диоды и предохранитель (его роль тут часто играет маломощный резистор с небольшим – до 5-ти Ом – сопротивлением). Далее проверяем транзисторы. Если все эти элементы целы, то стоит также проверить динистор (заменив его на заведомо целый). Все детали для замены и проверки можно брать из балластов компактных люминесцентных ламп – у них нередко разрушается колба, либо перегорает нить накала, оставляя целым балласт. В дополнение к сказанному выложу схемку – шпаргалку, детали, чаще всего выходящие из строя, обведены на ней красным (рис. 12). Схема, на первый взгляд, немного отличается от нашей, но принцип и детали в общих чертах одни и те же, так что серьезных затруднений в их определении не должно возникнуть.

Наиболее уязвимые элементы электронного балласта

Видео – Ремонт электронного балласта

Ремонт люминесцентных ламп

После ремонта либо замены балласта, вновь устанавливаем лампы на место и включаем ток. Если они по-прежнему не горят, а балласт исправен, то дело в самих лампах причин неисправности тут всего 3 – перегорание нитей накала, старение лампы либо утечка газа (такое случается, если плохо пропаяны штыревые контакты цоколя). Если со вторыми двумя вариантами сделать что-либо невозможно, то первый вполне даже излечим. Для этого нужно просто подключить лампу по альтернативной схеме (рис. 13). Сразу оговорюсь – с новыми лампами так поступать не рекомендуется – способ довольно агрессивный и при его применении лампа быстро приходит в негодность. Схема достаточно простая и состоит всего из 4-х деталей – индуктивного (не путайте с электронным это просто катушка, не содержащая радиоэлементов) балласта, конденсатора 1-4 мкФ х 400 в, кнопочного выключателя, ну и, конечно же, самой лампы.

Схема подключения лампы

Принцип работы этой схемы предельно прост – при нажатии на кнопку, в лампу через конденсатор подается высокое напряжение, достаточное для ее зажигания. После зажигания лампы кнопку отпускают, она вместе с конденсатором нужна только для разогрева лампы и возникновения в ней тлеющего разряда, после чего лампа работает в обычном режиме. Такая схема подключения, конечно же не делает лампу вечной, но позволяет продлить ей жизнь на пару-тройку месяцев.

Видео – Ремонт и переделка люминесцентных ламп

Электронный балласт: где купить?

Помимо обычных специализированных магазинов имеются также интернет – порталы (свой сай сейчас имеет практически каждый производитель), где можно заказать интересующее устройство. Где лучше? А это уж кому как удобнее – свои плюсы и минусы есть в обоих вариантах – если в одном случае можно подержать устройство в руках, проверить, при необходимости легко обменять, то в другом можно сравнить цены различных компаний, почитать отзывы, вживую пообщаться с людьми уже купившими балласт именно такого типа, модели и мощности, какой нужен именно Вам… Так что где покупать – дело сугубо личное. Единственное непременное условие в обоих случаях – мощность балласта должна соответствовать мощности используемых ламп, в противном случае что-то из них (то устройство, чья мощность ниже) сгорит. Решив, где покупать, можно задуматься и о том, какой покупать.

Электронный балласт для люминисцентных ламп

Ниже я сейчас приведу небольшую подборку с Яндекс-Маркета с хорошим рейтингом и приемлемой ценой:

В этот список вошли балласты с оценкой в 5 звезд и ценой до 1000 рублей различных производителей. Это текущая обстановка на Яндекс Маркете. А для того, чтобы эта информация не стала актуальной как можно дольше, посмотрим как по возможности сберечь от выхода из строя имеющиеся у нас лампы.

Цены на электронные балласты

Причины поломок ламп с электронным балластом

Причин этих на самом деле не так много и если с первой из них – детали низкого качества, мы уже ничего не можем сделать, то сберечь наши светильники от прочих факторов, нам вполне по силам. Итак, перегрев – вторая по распространенности причина выхода их строя как электронного балласта, так и самих ламп. Вызван перегрев чаще бывает не внешним теплом, а перепадами напряжения либо неправильной эксплуатацией. Также вредны для ламп частые включения – выключения, нестабильное напряжение в электросети и повышенная влажность в помещении. Все эти факторы негативно сказываются на долговечности ламп, но предотвратить их в наших силах.

Видео – Почему может не работать светодиодная лампа

Как работает ЛЛ с электромагнитным балластом

А напоследок немного углубимся в историю и вспомним все такие же лампы, но с электромагнитным (индуктивным) балластом – именно такой был рассмотрен на рисунке 13. Для начала рассмотрим схему нормального включения такой лампы (она, собственно, мало отличается от схемы экстремального включения (все тот же рисунок 13), но некоторые отличия все-таки есть). Так, например, конденсатор теперь должен сглаживать пульсацию, а не создавать скачок напряжения, поэтому из параллельного подключения переключен на последовательное, а кнопка заменена на стартер – теперь, когда нити накала целы, он отлично справляется со своей задачей – разогревом и зажиганием лампы. Это, собственно, и все изменения в схеме (рис.14)

Теперь сравним принцип и качество работы с принципом и качеством ЛЛ с электронным балластом. Принцип приблизительно такой же – зажигается лампа высоким напряжением, после возникновения тлеющего разряда напряжение падает. Зато что касается качества – свет лампы, питаемой током низкой частоты неровный – пульсирующий, прослушивается гудение дросселя, ломается чаще, нежели ЛЛ с электронным устройством пуска. Правда нельзя не отметить и одного плюса – чинится такая лампа в считанные минуты по той простой причине, что перегореть в ней могут только стартер (чаще всего), сама лампа (довольно редко) и дроссель, он же электромагнитный балласт (крайне редко, на моей памяти ни разу). Вот такая простота как конструкции, так и ремонта.

Видео – Дроссель 40 Вт и куда его можно применить

Вот мы и разобрались немного с устройством электронных балластов и принципом работы ЛЛ двух разных поколений, узнали о их слабых и сильных сторонах и даже узнав о тонкостях их ремонта. Как всегда приглашаю всех заходить почаще, так как ресурс постоянно обновляется и мы всегда рады делиться с вами новой интересной и полезной информацией.

В данной статье мы рассмотрим простой вариант импульсного блока питания. Балласт от ЛДС в наше время стоит копейки, как и электронный трансформатор (ЭТ) от галогенных ламп. Мы знаем про основные недостатки ИБП для галогенок – работает слишком не стабильно, выходное напряжение может отклонятся в ту или иную сторону, не имеет сетевого фильтра.

Блок питания из балласта люминесцентных ламп

Но все эти недостатки ничто, по сравнению с двумя основными – при даже секундном КЗ на выходе, схема буквально взрывается. Другой основной недостаток заключается в том, что устройство работает только под нагрузкой, то есть, если мы на выходе подключим светодиод с ограничительным резистором, то он светится не будет, что делает данный ИБП очень неудобным, для иных целей.

Блок питания из балласта люминесцентных ламп

Балласт от ЛДС – по сравнению с блоками ЭТ они более стабильны, встречаются балласты с сетевыми фильтрами. Даже в дешевых блоках мы можем наблюдать дроссель, термистор и электролиты по питанию, предохранитель в них ставят почти всегда. Все это делает балласт долговечным и надежным.

Блок питания из балласта люминесцентных ламп

Но давайте вспомним, что выходное напряжение балласта пригодно только для питания ЛДС. В моем случае был использован балласт ЛДС на 40 ватт.
Я решил объединить две эти схемы, для получения нового вида ИБП.

Блок питания из балласта люминесцентных ламп

Китайский электронный трансформатор на 105 ватт был разобран, с платы был выпаян импульсный трансформатор.

Блок питания из балласта люминесцентных ламп

Особых переделок делать не нужно, просто высокое напряжение от балласта подается на первичную обмотку импульсного трансформатора. Питание подается через конденсатор 3кВ 6800пФ (как емкость, так и напряжение конденсатора могут отклонятся в ту или иную сторону на 30-40%)
На вторичной обмотке трансформатора мы получаем как раз 12 вольт.

Блок питания из балласта люминесцентных ламп

Мощность такого блока питания невелика, но вполне хватает для создания маломощных лабораторных ИБП. Дополнив схему выпрямителем, мы получим ИБП, который может использоваться как зарядное устройство или блок питания для усилителей мощности, область применения достаточно широка, ведь без блока питания не будет работать ни одна конструкция.

Блок питания из балласта люминесцентных ламп

При дополнении диодным выпрямителем нужно использовать импульсные диоды, поскольку рабочая частота устройства 15-30кГц и более ( частота зависит от схемы устройства, ее мощности и производителя, у всех по-разному).

Блок питания из балласта люминесцентных ламп

Также, следует учесть, что выходной ток может достигать до 3,5-4А, следовательно, диоды нужны мощные. Очень удобно использовать диодные сборки из компьютерных БП, из отечественного интерьера отлично подойдет КД213А.

Блок питания из балласта люминесцентных ламп

Привет, друзья. В эпоху светодиодных технологий многие все еще предпочитают для освещения использовать люминесцентные лампы (они же экономки). Это разновидность газоразрядных ламп, которые многие считают, мягко скажем, не очень безопасным видом освещения.

Но, вопреки всем сомнениям, они успешно висели в наших домах не одно десятилетие, поэтому у многих сохранились нерабочие эконом-лампы.

Как мы знаем, для работы многих газоразрядных ламп требуется высокое напряжение, порой в разы выше, чем напряжение в сети и обычная экономка тоже не исключение.

В такие лампы встроены импульсные преобразователи, или балласты. Как правило, в бюджетных вариантах применяется полумостовой автогенераторный преобразователь по очень популярной схематике. Схема такого блока питания работает довольно надежно, несмотря на полное отсутствие каких-либо защит, помимо предохранителя. Тут нет даже нормального задающего генератора. Цепь запуска построена на базе симметричного диака.

Схема та же, что и у электронного трансформатора , только вместо понижающего трансформатора оттуда использован накопительный дроссель. Я намерен быстро и понятно показать вам, как можно такие блоки питания превратить в полноценный импульсный источник питания понижающего типа, плюс обеспечить гальваническую развязку от сети для безопасной эксплуатации.

Для начала хочу сказать, что переделанный блок может быть использован в качестве основы для зарядных устройств, блоков питания для усилителей. В общем, можно внедрить там, где есть нужда в источнике питания.

Нужно лишь доработать выход диодным выпрямителем и сглаживающей емкостью.

Подойдет для переделки любая экономка любой мощностью. В моем случае -это полностью рабочая лампа на 125 Ватт. Лампу сначала нужно вскрыть, достать блок питания, а колба нам больше не нужна. Даже не вздумайте ее разбивать, поскольку там содержатся очень токсичные пары ртути, которые смертельно опасны для живых организмов.

Первым делом смотрим на схему балласта.

Они все одинаковые, но могут отличаться количеством дополнительных компонентов. На плате сразу бросается в глаза довольно массивный дроссель. Разогреваем паяльник и выпаиваем его.

Блок питания из балласта люминесцентных ламп

Дальше находим убитый блок питания от компьютера. Нам нужен только силовой импульсный трансформатор.

На плате у нас имеется также маленькое колечко.

Это трансформатор обратной связи потоку и он состоит из трех обмоток, две из которых являются задающими,

а третья является обмоткой обратной связи потоку и содержит всего один виток.

А теперь нам нужно подключить трансформатор от компьютерного блока питания так, как показано по схеме.

То есть один из выводов сетевой обмотки подключается к обмотке обратной связи.

Второй вывод подключается к точке соединения двух конденсаторов полумоста.

Да, друзья, на этом процесс завершен. Видите, насколько все просто.

Теперь я нагружу выходную обмотку трансформатора, чтобы убедиться в наличии напряжения.

Не забываем, начальный запуск балласта делается страховочной лампочкой. Если блок питания нужен на малую мощность, можно обойтись вообще без всякого трансформатора, и вторичную обмотку обмотать на непосредственно сам дроссель.

Не помешало бы установить силовые транзисторы на радиаторы. В ходе работы под нагрузкой их нагрев – это естественное явление.

Вторичную обмотку трансформатора можно сделать на любое напряжение.

Для этого нужно его перемотать, но если блок нужен, например, для зарядного устройства автомобильного аккумулятора, то можно обойтись без всяких перемоток. Для выпрямителя стоит использовать импульсные диоды, опять же, оптимальное решение – это наше КД213 с любой буквой.

В конце хочу сказать, что это только один из вариантов переделки таких блоков. Естественно, существует множество иных способов. На этом, друзья, все. Ну а с вами, как всегда, был KASYAN AKA. До новых встреч. Пока!

Хорошо известные большинству пользователей энергосберегающие лампы, несмотря на свою популярность, довольно быстро приходят в негодность и обычно не поддаются окончательному восстановлению. Однако если в них перегорает всего лишь один светильник, а питающая его схема ЭПРА остаётся в относительной целостности, она может использоваться в качестве самостоятельного блока питания (смотрите фото).

Устройство и принцип работы

Выпускаемые отечественной промышленностью энергосберегающие лампы, а также широко распространенные китайские их аналоги имеют схожую электронную схему (ЭПРА), работающую по принципу импульсного преобразования. Такое устройство энергосберегающей лампы обеспечивает ей следующие очевидные преимущества:

Дополнительная информация. Рассматриваемая энергосберегающая импульсная схема питания имеет только один небольшой недостаток, состоящий в её низкой надёжности и частом выходе из строя.

Суть работы устройства ЭПРА (так называемого балласта) достаточно проста и состоит в следующем:

  • Сначала напряжение 220 Вольт преобразуется в выпрямительном модуле в постоянный потенциал примерно той же величины;
  • Затем в электронной схеме под воздействием выпрямленного напряжения формируется последовательность высоковольтных импульсов частотой от 20 до 40 кГц (точное значение зависит от конкретной модели изделия);
  • На завершающем этапе преобразования электрические импульсы выпрямляются (сглаживаются) выходным дросселем, а получившееся после этого высокое напряжение подаётся непосредственно на осветительную лампу.

Для лучшего понимания принципа, согласно которому работают энергосберегающие лампы, потребуется более тщательное рассмотрение используемой в них электронной схемы.

Схема ЭПРА

Принципиальный подход к повторному применению энергосберегающего изделия предполагает использование ещё не сгоревшей электронной платы в качестве импульсного источника питания.

Обратите внимание! Если включённая в осветительную сеть лампа пока ещё горит, но при этом начинает часто мигать и самостоятельно выключаться, это верный признак того, что с определённой вероятностью её можно отнести к уже перегорающим светильникам.

Для понимания того, как работают энергосберегающие лампы, потребуется разобраться с их электронной схемой (смотрите рисунок ниже).

Рабочая схема электронного балласта включает в свой состав следующие обязательные элементы:

  • Выпрямительный узел на диодах VD1-VD4, на который сетевое напряжение подаётся через дополнительный ограничивающий резистор R0;
  • Высоковольтный фильтрующий конденсатор (С0) и сглаживающий фильтр (L0);
  • Специальный транзисторный преобразователь, обеспечивающий формирование рабочих импульсов эсл (эта схема содержит целый ряд электронных деталей, облегчающих автозапуск колебаний частотой 20 кГц).

Диоды VD7 и VD6 выполняют защитную функцию, а трансформаторы TV1-1 и TV1-2 образуют цепи обратной связи, повышающей устойчивость процесса генерации. Красным цветом на рисунке, где изображена лампа (точнее её схема) выделен набор деталей, которые должны быть удалены при доработке электронного блока.

Важно! Указанные на рисунке контрольные точки А–А` обязательно соединяются металлической перемычкой.

Особенности доработки электронного модуля

Выбор по мощности

Перед тем, как сделать блок питания из энергосберегающей лампы, в первую очередь, нужно будет определиться с той мощностью, которая потребуется от него в каждом конкретном случае. От этого параметра будет зависеть степень модернизации электронной части, обеспечивающая возможность нормальной эксплуатации подключаемого к ней оборудования.

Так, при небольшой рабочей мощности будущего блока питания переделка ЭПРА затронет лишь малую часть всей схемы (смотрите рисунок).

Если же предполагается сделать импульсный блок питания из энергосберегающей лампы, рассчитанный на значительные нагрузки (чтобы подключать импульсный паяльник, например), его нагрузочную характеристику необходимо увеличить. Для этого потребуется существенная доработка схемы ЭПРА в расчёте на выходную мощность более 50-ти Ватт.

Для расчета этого параметра следует вспомнить, что он определяется как произведение выходного тока на рабочее напряжение. То есть, если 50-ти ваттный импульсный паяльник рассчитан на напряжение 25 Вольт, то самодельный блок питания должен обеспечивать выходной ток не менее 2-х Ампер (модернизированная схема приводится ниже).

Помимо паяльника, от такого импульсного блока питания может работать любая низковольтная лампа средней мощности.

Какие детали потребуются

На доработанной схеме №1 новые детали выделены красным цветом и обозначают следующие элементы:

  • Диодный мост VD14-VD17;
  • Два конденсатора (простой и электролитический) С9 и С10;
  • Намотанная на балластном дросселе L5 дополнительная обмотка, число витков которой подбирается экспериментально.

Важно! Она выполняет функцию разделительного элемента, исключающего возможность попадания сетевого напряжения 220 Вольт на выход модуля питания.

Разберёмся с тем, что можно сделать, чтобы обезопасить выход БП от перегрузок за счёт правильного выбора числа витков выходной катушки.

Выбор параметров выходной катушки

Для вычисления нужного количество витков в съёмной обмотке L5 необходимо немного поэкспериментировать, то есть поступить следующим образом:

  • Сначала поверх имеющейся катушки нужно намотать порядка 10-ти витков любого провода в изоляции;
  • Затем следует нагрузить намотанную часть на реостат с сопротивлением 5-6 Ом и мощностью порядка 30 Ватт (для его подсоединения может использоваться метод пайки);
  • В результате получают конструкцию, изображённую на рисунке ниже;
  • После этого схему включают в сеть, а затем посредством тестера замеряют напряжение на реостате;
  • Полученное значение в вольтах делится на намотанное ранее число витков, в результате чего получается цифра, соответствующая удельному вольтажу на 1 виток.

В завершении эксперимента определяют требуемое количество витков, необходимых для получения заданного выходного напряжения путём деления его величины на полученный ранее результат.

Конструктивное исполнение обмотки

При доработке выходной катушки всегда нужно помнить о том, что первичная обмотка находится под высоким напряжением. Поэтому все её конструктивные изменения должны осуществляться только на отключенном от сети преобразовательном устройстве.

Обмотка по варианту исполнения №1

При намотке дополнительных витков на уже имеющийся в ЭПРА дроссель не следует забывать про межобмоточную изоляцию, которая обязательна для проводов типа ПЭЛ (в тонкой эмалевой изоляции).

В качестве такой изоляции, наматываемой в несколько слоёв, следует применять специальную ленту из политетрафторэтилена, нередко используемую для уплотнения резьбовых соединений.

Дополнительная информация. Такая изолирующая лента имеет толщину всего 0,2 мм и чаще всего используется при проведении ремонтных и сантехнических работ.

Готовая обмотка нагружается на диодный мостик, выпрямленное напряжение с которого поступает на нагрузку (это может быть обычная низковольтная лампочка, например). Выходная мощность в выполненном по этой схеме блоке питания обычно ограничивается размерами используемого трансформатора и допустимыми токами коммутируемого устройства на транзисторах TV1 и TV2.

Обмотка по варианту исполнения №2

Для получения блока питания большей мощности, к которому можно будет подключать импульсный паяльник, например, потребуется более сложная доработка (смотрите схему на приведённом ниже рисунке).

В состав дорабатываемой части схемы, выделенной на рисунке красным цветом, входят следующие элементы:

  • Дополнительный трансформатор TV2 с тремя обмотками (для его изготовления удобнее всего воспользоваться ферритовым кольцом с соответствующей магнитной проводимостью);
  • Два полупроводниковых выпрямляющих диода VD14 и VD15;
  • Сглаживающие конденсаторы C9 и C10 достаточной ёмкости.

Помимо этого обязательно нужно будет заменить коммутирующие транзисторы TV1 и TV2 на более мощные образцы с одновременной их установкой на охлаждающие радиаторы.

Обратите внимание! Для лучшего сглаживания пульсаций ёмкости большинства конденсаторов (включая выходные C9 и C10) необходимо будет немного увеличить.

В заключение отметим, что для того, чтобы использовать перегоревшую энергосберегающую лампу для самостоятельного изготовления импульсного блока питания (ибп), нужны определённые навыки обращения с электрическим паяльником. Помимо этого, потребуется умение разбираться с электронными схемами хотя бы на уровне понимания материала, приводимого в данном обзоре.

Видео

Читайте также: