Для чего в двигателе применяется несколько цилиндров пдд

Добавил пользователь Алексей Ф.
Обновлено: 06.08.2024

Виды двигателей автомобилей по расположению цилиндров

Поршневые двигатели внутреннего сгорания получили на сегодняшний день самое широкое распространение. Их устанавливают на различные типы колесной и гусеничной техники, самолеты малой авиации, морские и речные суда, бензиновые и дизельные электростанции и т. д. Блок цилиндров является основным элементом конструкции корпуса такого двигателя при наличии двух и более камер объемного вытеснения. Изготавливается он, как правило, из алюминиевых сплавов либо чугуна. В зависимости от расположения цилиндров относительно друг друга различают несколько конфигураций поршневых ДВС (следует отметить, что работники СТО в Белгороде выполняют ремонт автомобильных моторов различных типов).

Наиболее распространенные конструкции

  • Рядный. Цилиндры данного двигателя (их количество составляет от 2 до 12) расположены в одной плоскости и вращают общий для всех коленвал. Отличается простотой конструкции, удобством обслуживания, равномерностью износа механизмов, технологичностью. В то же время рост числа камер объемного вытеснения приводит к увеличению габаритов, что ограничивает сферу применения (моторы с большим их количеством используются на судах).
  • V-образный. Два ряда цилиндров, вращающих один коленвал, расположены под определенным углом друг к другу (если он составляет 15 градусов (а головка блока общая), используется обозначение VR). Количество камер — от 2 до 24. Основное преимущество (в дополнение к плюсам рядного) – компактные размеры, увеличенный объем цилиндров.
  • Оппозитный. Цилиндры расположены в одной плоскости под углом 180 градусов друг к другу, единый коленвал. Достоинства: снижение центра тяжести, уменьшение вибрации.
  • W-образный. Ряды цилиндров (3 либо 4) расположены под углом менее 90 градусов, единый коленвал. Достоинства (при равном с V-мотором объеме): повышенные показатели мощности и крутящего момента, экономия подкапотного пространства и материалов при изготовлении блока. Недостатки: сложности с балансировкой и охлаждением.
  • Звездообразный. Цилиндры радиально расходятся от общего коленвала (углы между ними одинаковые). Достоинства: высокая мощность, простота эксплуатации, небольшой вес (за счет отсутствия массивного коленчатого вала). Недостаток – подтекание масла в нижние камеры в нерабочем состоянии. Широко используется в авиации.

Как нумеруются цилиндры, виды их расположения в двигателе

С момента изобретения первого ДВС перед инженерами стояла очень ответственная цель –снять максимум мощности с конкретного объема силового агрегата. Стараясь решить эту задачу, конструкторы проводили эксперименты с числом и компоновкой камер сгорания.


В разное время в серийных моделях авто использовались, как маленькие одноцилиндровые ДВС, так и огромные агрегаты с 16-ю цилиндрами. На разных моделях камеры сгорания расположены и нумеруются по-разному и начинающему автолюбителю эта информация будет очень полезна.

Как располагаются цилиндры в двигателях

Существуют разные модели двигателей – это и старинные одно- и двухцилиндровые ДВС, традиционные рядные четырех- и шестицилиндровые модели.

Более крупные агрегаты имели V-образные блоки – такие агрегаты могли иметь восемь и более камер сгорания.

Рядное расположение

При рядном расположении в блоке цилиндры располагаются в один ряд. В такой конфигурации существуют двух, трех, четырех, пяти и даже шестицилиндровые моторы.


Двух- и трехцилиндровые ДВС сейчас устанавливаются на современных авто не так часто, хотя популярность их медленно набирает обороты.

Пятицилиндровые двигатели с рядным расположением на автомобилях, производимых серийно, стали появляться в 70-х годах. В числе первых можно выделить дизельные модели Mercedes – они устанавливались в 1974 году на модели в кузове W123.

А уже в 1976 году построили пятицилиндровый мотор от Audi. Начиная с конца 80-х годов рядная пятерка уже никого не удивляла и успешно устанавливалась на самые разные автомобили Fiat, Volvo и других автобрендов.

Про восьмицилиндровые модели и говорить не стоит – с такой компоновкой давно попрощались еще в 30-е годы.

Почему? С увеличением объемов блоки также увеличивались. Это создавало конструкторам и инженерам массу проблем при компоновке.

К примеру, втиснуть рядную восьмерку в переднеприводный автомобиль получилось только в двух случаях – это Austin Maxi 2200, который производился в 60-х, и Volvo S80.

В два ряда

Как сделать большой рядный ДВС короче и компактнее?


Самые популярные модели – это те, где угол развала блока составляет 60 и 90 градусов. В такой конфигурации можно встретить шести- , восьми- , двенадцатицилиндровые моторы.

В первые такой силовой агрегат появился на Lancia Aurelia, это был 1950 год. За счет своих компактных размеров автомобиль быстро стал популярным среди автомобилистов.

Восемь камер сгорания в этой конфигурации располагаются по четыре в два ряда. Это самая компактная компоновка для крупнообъемных ДВС. Самый большой объем за всю историю автомобилестроения в такой V-компоновке составлял 13 литров. В случае с двенадцатью цилиндрами разница только в их количестве.

Со смещением

Конструкторы и инженеры искали компромиссное решение, чтобы создать мощный и в тоже время компактный силовой агрегат для легковых авто в среднем классе. Двигатель со смещением – это шестицилиндровый V-образный блок.


Оппозитный тип

Как известно, на V-образном блоке угол развала двух частей составляет – 90 или 60 градусов. Если угол развала между двумя частями будет 180 градусов, то это оппозитный двигатель.

Здесь цилиндры располагаются друг напротив друга, горизонтально. Коленчатый вал в таких моделях общий, установлен в центре, а поршни двигаются от него.


Моторы W

В данных силовых агрегатах соединены для ряда камер сгорания с VR-расположением. В каждом ряду цилиндры размещаются под углом 15 градусов.


Оба ряда находятся под углом в 72 градуса. В случае с восьмицилиндровым мотором, блок представляет собой два V-образных блока, которые находятся под углом в 72 градуса.

Нумерация цилиндров в разных типах ДВС

Что касается стандартов нумерации камер сгорания, то их нет. На то, как они пронумерованы в ДВС, влияют такие факторы:

  • Тип привода;
  • Тип ДВС, компоновка блока;
  • Поперечное либо продольное расположение агрегата под капотом;
  • Сторона вращения.


На стандартных переднеприводных авто с поперечно установленным двигателем нумерация начинается со стороны ГРМ. Так, возле ремня ГРМ находится первый цилиндр и дальше все остальные. Последний находится около КПП.

Примеры

В многоцилиндровых V-образных двигателях первый цилиндр расположен в ряду с водительской стороны.


В двигателях американского производства камеры сгорания и их нумерация может отличаться и не поддаваться логике.

Так, для рядных четверок и шестерок первым может быть цилиндр около радиатора, в то время, как на всех прочих моделях нумерация начинается в сторону салона. Если нумерация обратная, то первым считается цилиндр ближайший к салону.

Французы очень оригинальны и применяют два способа нумерации камер сгорания ДВС.

  • На рядных четверках нумерация начинается от маховика.
  • Если это V-образная шестерка, тогда ближний к радиатору ряд – это первые три цилиндра, а ряд ближе к салону – последние три.

Как определить порядок работы цилиндров

Разные версии однотипных ДВС могут работать по разным схемам. К примеру, ЗМЗ-402 мотор работает следующим образом – 1-2-4-3. А вот ЗМЗ-406 имеет другой порядок – 1-3-4-2.

Шестицилиндровые моторы с рядным расположением работают по такой схеме – 1-5-3-6-2-4.

Тема обширная, поэтому обязательно поделись своим опытом или мнением в комментария ниже.

Разновидности ДВС: какие существуют двигатели внутреннего сгорания


Поршневой ДВС (двигатель внутреннего сгорания) является тепловой машиной и работает по принципу сжигания смеси топлива и воздуха в камере сгорания. Главной задачей такого устройства выступает преобразование энергии сгорания топливного заряда в механическую полезную работу.

Не смотря на общий принцип действия, сегодня существует большое количество агрегатов, которые существенно отличаются друг от друга благодаря целому ряду индивидуальных конструктивных особенностей. В этой статье мы поговорим о том, какие бывают двигатели внутреннего сгорания, а также в чем состоят их главные особенности и отличия.

Типы двигателей внутреннего сгорания

Начнем с того, что ДВС может быть двухтактным и четырехтактным. Что касается автомобильных моторов, указанные агрегаты четырехтактные. Такты работы двигателя представляют собой:

  • впуск топливно-воздушной смеси или воздуха (что зависит от типа ДВС);
  • сжатие смеси горючего и воздуха;
  • сгорание топливного заряда и рабочий ход;
  • выпуск из камеры сгорания отработавших газов;

По такому принципу работают как бензиновые, так и дизельные поршневые моторы, которые нашли широкое применение в автомобилях и на другой технике. Также стоит упомянуть и агрегаты на газу, в которых газовое топливо сжигается аналогично дизтопливу или бензину.

Бензиновые силовые агрегаты

Что касается поршневых бензиновых моторов, такие двигатели имеют систему зажигания для воспламенения рабочей смеси от искры. Системы питания в таких агрегатах могут быть карбюраторными или инжекторными (впрысковыми).

Приготовление рабочей смеси в карбюраторных ДВС происходит в карбюраторе, далее смешанный бензин и воздух подаются во впускной коллектор. Сегодня такие системы считаются устаревшими, так как не способны обеспечить двигателю должную экологичность и экономичность.

Впрысковые ДВС по типу конструкции системы питания бывают моноинжекторными (моновпрыск) или системами с распределенным впрыском. В первом случае схема предполагает наличие только одной форсунки, которая впрыскивает горючее во впускной коллектор. Решения с распределенным впрыском имеют отдельную форсунку на каждый цилиндр, которая установлена рядом с впускными клапанами.

Дальнейшее развитие систем топливоподачи привело к появлению моторов с прямым (непосредственным) впрыском. Главным их отличием от предшественников является то, что воздух и топливо подается в камеру сгорания отдельно. Другими словами, форсунка устанавливается не над впускными клапанами, а монтируется прямо в цилиндр.

Подобное решение позволяет подавать топливо напрямую, причем сама подача разделена на несколько этапов (подвпрысков). В результате удается добиться максимально эффективного и полноценного сгорания топливного заряда, двигатель получает возможность работать на бедной смеси (например, моторы семейства GDI), падает расход топлива, снижается токсичность выхлопа и т.д.

Дизельные моторы

Дизельный двигатель работает на дизтопливе, а также в значительной мере отличается от бензинового. Основное отличие заключается в отсутствии искровой системы зажигания. Воспламенение смеси топлива и воздуха в дизеле происходит от сжатия.

Если просто, сначала в цилиндрах сжимается воздух, который сильно нагревается. В последний момент происходит впрыск солярки прямо в камеру сгорания, после чего нагретая и сильно сжатая смесь воспламеняется самостоятельно.

Дизели также отличаются большей массой, так как особенности воспламенения от сжатия предполагают более серьезные нагрузки на все элементы такого агрегата. Другими словами, детали в дизельном моторе более прочные и тяжелые. Также дизельные моторы более шумные, что обусловлено процессом воспламенения и сгорания дизельного топлива.

Роторный двигатель

Двигатель Ванкеля (роторно-поршневой двигатель) представляет собой принципиально иную силовую установку. В таком ДВС привычные поршни, которые совершают возвратно-поступательные движения в цилиндре, попросту отсутствуют. Главным элементом роторного мотора является ротор.

Указанный ротор вращается по заданной траектории. Роторные ДВС бензиновые, так как подобная конструкция не способна обеспечить высокую степень сжатия рабочей смеси.

Если говорить о минусах, то стоит выделить заметно сниженный ресурс сравнительно с поршневыми агрегатами, а также высокий расход топлива. Также роторный двигатель отличается повышенной токсичностью, то есть не совсем вписывается в современные экологические стандарты.

Гибридный двигатель

Гибридный силовой агрегат фактически является сочетанием поршневого бензинового или дизельного ДВС и электромотора. Также в конструкции присутствует тяговая аккумуляторная батарея, которая питает электродвигатель.

Также во время работы гибридной установки активно используется схема рекуперации энергии. Например, во время торможения двигателем работает генератор, который подзаряжает тяговый аккумулятор. Такое сочетание двух типов силовых установок позволяет получить улучшение разгонной динамики (особенно когда одновременно задействован ДВС и электромотор), наблюдается существенная экономия топлива и малый выброс токсичного выхлопа.

Компоновка и технические характеристики ДВС

Еще стоит добавить, что существуют многочисленные разновидности двигателей внутреннего сгорания, которые отличаются друг от друга по компоновке и расположению цилиндров.

Дело в том, что пространство в моторном отсеке ограничено, при этом на разных автомобилях возникает необходимость уместить в таком пространстве агрегат с тем или иным количеством цилиндров.

Как правило, по компоновке на большинстве машин чаще всего можно встретить:

  • рядный двигатель;
  • V-образный мотор;
  • оппозитный двигатель;

Добавим, что существуют так называемые двигатели типа VR. Их особенностью является малый угол развала, позволяя уменьшить размеры ДВС в длину и ширину. Также стоит упомянуть мощные W-двигатели. Указанные силовые агрегаты многоцилиндровые (например, W12) Что касается компоновки, конструкция может включать в себя сразу три ряда цилиндров, которые расположены под большим углом развала.

Основные технические параметры ДВС

Двигатели внутреннего сгорания также имеют целый ряд характеристик и параметров, которые закладываются конструктивно. Если просто, речь идет о рабочем объеме, степени сжатия, мощности и крутящем моменте и т.д.

Естественно, чем большим окажется показатель крутящего момента, тем большей будет тяга. Другими словами, от данного показателя зависит разгонная динамика. Что касается мощности двигателя, это величина, которая отображает произведенную работу за единицу времени.

Увеличение крутящего момента и мощности возможно посредством двух способов:

  • больший рабочий объем;
  • сжигание большего количества топливно-воздушной смеси;

Если просто, в первом случае речь идет о физическом увеличении камеры сгорания и объема цилиндров. Во втором подразумевается принудительная подача воздуха в цилиндры под давлением для сжигания большего количества топлива.

Что в итоге

Как видно, приведенный выше материал дает общее представление о том, какие есть двигатели внутреннего сгорания. При этом даже с учетом общего принципа действия, силовые агрегаты могут значительно отличаться по таким показателям, как компоновка, мощность, крутящий момент, расход горючего и т.д.

По этой причине для объективной оценки производительности того или иного двигателя на разных оборотах, причем не на коленвалу, а на колесах, необходимо проводить специальные комплексные замеры на динамометрическом стенде.

Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы.

Моторы линейки TSI. Конструктивные особенности, преимущества и недостатки. Модификации с одним и двумя нагнетателями. Рекомендации по эксплуатации.

Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI.

Дизельный мотор TDI. Отличительные особенности двигателя данного типа. Преимущества и недостатки, ресурс, особенности турбонаддува. советы по эксплуатации.

Двигатель семейства FSI: отличия, особенности, плюсы и минусы силового агрегата данного типа. Распространенные проблемы двигателей FSI, обслуживание мотора.

Линейка дизельных двигателей CRDi Hyundai/KIA: сильные и слабые стороны моторов данного типа, особенности эксплуатации, ремонта и обслуживания.

Вот тут сегодня задумался над вопросом.
Вот допустим , есть два условных двигателя объёмом 3 литра. У них одинаковая степень сжатия, работают на одном бензине(диз.топливе). Но один 4-х цилиндровый, второй 6-ти. Так вот вопрос. какой из них будет мощнее при равных макс. крут. моментах и наоборот, какой будет тяговитей при равных мощностных показателях и почему.
Или их вообще нельзя сравнивать.
И для УАЗа какой был бы предпочтительней по вашему мнению господа, 4 или 6.
Можно даже обсудить два варианта: дв.бензиновые 4 и6 цилиндровые между собой и дзельные между собой.

Прошу простить меня , если мои вопросы покажутся глупыми 😳 , прото любопытно , то думает народ. 😯

какой из них будет мощнее при равных макс. крут. моментах 😯

мощьнее будет тот, у кого будут выше максимальные обороты, так как мощность это ни что иное как произведение крутящего момента на число оборотов коленвала

Да , я над БМВ тоже задумывался.

Малое число цилиндров при большом объеме — это уже танковые двиглы. 😉

Например, УТД-320 на БМП-1/2. 6 горшков, 6 литров, 350 (кажется) сил.

Рядный двигатель: 4 и 6 цилидровый преимущества и недостатки

На многих современных автомобилях используется рядный двигатель, в котором в основном 4 цилиндра, но в последние время появились автомобили, в которых используется рядный шестицилиндровый ДВС. Шестицилиндровые рядные ДВС отличаются меньшим расходом топлива по сравнению с V — образными ДВС. У рядного ДВС цилиндры расположены в один ряд, а у V образных они расположены в два ряда под определенным углом друг к другу. Рядные ДВС были одни из самых первых, которые пришли на смену паровым двигателям. Мы недавно писали про поршневой двигатель внутреннего сгорания, там более подробно рассмотрены некоторые моменты.

Как все начиналось?

Предком современного рядного ДВС был одноцилиндровый двигатель. Придумал и построил его Этьен Ленуар еще в 1860 году. Принято считать именно так, хотя попытки получить патент на данный двигатель были и еще до Ленуара. Но именно его разработка максимально похожа на те конструкции, что сегодня установлены под капотами большинства бюджетных серийных легковых авто.


Больше и мощнее

Идея Ленуара оказалась гениальной. Многие инженеры и изобретатели тратили годы и силы на то, чтобы максимально усовершенствовать двигатель (конечно, на уровне, существующих на тот момент технических возможностей). Главный упор был сделан на повышение мощности.

Вначале внимание концентрировали на единственном цилиндре – пытались увеличить его размер. Тогда всем казалось, что увеличив размер, можно получить большую мощность. И увеличение объема тогда было проще всего. Но одним цилиндром не обошлось. Пришлось сильно увеличить и остальные детали – шатун, поршень, блок.


Все те двигатели получались очень нестабильными, имели большую массу. В процессе работы такого мотора была огромная разница во времени между тактами воспламенения смеси. Буквально каждая деталь в таком агрегате гремела и тряслась, что заставляло инженеров думать над решением. И они оснастили систему балансиром.

Тупиковый путь

Скоро всем стало понятно, что исследования зашли в тупик. Двигатель Ленуара не смог нормально и корректно работать, так как соотношение мощности, массы и размеров было ужасным. Нужна была масса дополнительной энергии, чтобы снова увеличивать объем цилиндра. Многие стали считать идею создания двигателя крахом. И люди до сих пор бы ездили на лошадях и повозках, если бы не одно техническое решение.

Конструкторы начали осознавать, что можно вращать коленчатый вал не только одним поршнем, но и сразу несколькими. Самым простым оказалось изготовление рядного двигателя – добавили еще несколько цилиндров.


Первый четырехцилиндровый агрегат мир смог увидеть в конце XIX века. Сравнить его мощность с современным двигателем нельзя. Однако по эффективности он был выше, чем все прочие его предшественники. Мощность удалось увеличить благодаря повышенному рабочему объему, то есть посредством добавления цилиндров. Довольно быстро специалисты различных компаний смогли создать многоцилиндровые моторы вплоть до 12-цилиндровых монстров.

Принцип действия

Как действует ДВС? Не считая того, что каждый двигатель имеется разное количество цилиндров, рядный двигатель с шестью или четырьмя цилиндрами работает одинаково. Принцип основывается на традиционных характеристиках любых ДВС.

Все цилиндры в блоке располагаются в один ряд. Коленчатый вал, приводимый в действие поршнями за счет энергии сгорания топлива, единственный для всех деталей цилиндро-поршневой группы. То же самое касается и ГБЦ. Она единственная на все цилиндры. Из всех существующих рядных двигателей можно выделить сбалансированные и несбалансированные конструкции. Оба варианта рассмотрим далее.

Баланс

Он важен по причине сложной конструкции коленчатого вала. Необходимость в балансировке зависит от числа цилиндров. Чем больше их в конкретном ДВС, тем большим должен быть баланс.


Несбалансированным двигателем может быть лишь та конструкция, где цилиндров не больше четырех. В противном случае в процессе работы появятся вибрации, сила которых будет способна разрушить коленчатый вал. Даже дешевые двигатели с шестью цилиндрами с балансиром будут лучше, чем дорогие рядные четверки без балансирных валов. Так, чтобы улучшить баланс, рядный двигатель с четырьмя поршнями иногда тоже может требовать установки успокоительных валов.

Расположение мотора


Рядный ДВС, обладающий несимметричной конструкцией относительно коленчатого вала, также имеет особенности. Часто вал сделан с компенсирующими отливами – эти отливы должны гасить силу инерции, образующуюся в результате работы поршневой системы.

Рядная шестерка сегодня уже имеет меньшую популярность – всему виной существенный расход топлива и крупные габаритные размеры. Но даже несмотря на большую длину блока цилиндров, двигатель отлично сбалансирован.

Преимущества и недостатки агрегата


Технический предел

Сейчас не XIX век, но современные силовые агрегаты все так же далеки от технического совершенства. И здесь не помогут даже современные турбины и высокооктановое топливо. КПД ДВС составляет около 20%, а вся прочая энергия тратится на силу трения, инерцию и детонацию. Лишь пятая часть бензина или дизеля пойдет на полезную работу.

Уже выработали основные свойства моторов с наибольшей эффективностью. При этом камеры сгорания и поршневая группа имеет существенно меньшие объемы и размеры. За счет компактных размеров детали имеют меньшую силу инерции – это снижает вероятность повреждения по причине детонации.


Заключение

К сожалению, двигателестроение достигло своего технологического предела. Вряд ли ученые сделают серьезные технические открытия и добьются большей эффективности от двигателя внутреннего сгорания. Так что все надежды на то, что наступит эра электромобилей.

Какой двигатель выбрать: 4-цилиндровый или 6-цилиндровый


Самые распространенные это 4-х и 6-ти цилиндровые двигатели. Причем оба могут предлагаться для одной и той же модели, да и мощность у них иногда практически одинаковая.

4-цилиндровые двигатели


Учитывая небольшие размеры такие двигатели устанавливают как вдоль, так и поперек. Обычно их объем составляет от 1 литра до 3,5. Основные преимущества – малый вес и габариты, экономичность, долговечность, простота и дешевизна в обслуживании.

Минусов немного. Главный – относительно небольшие, по сравнению с 6-цилиндровым мотором, мощность и крутящий момент, и, как следствие, недостаточная динамика. Особенно это ощущается на крупных автомобилях от D-класса и выше и, конечно, на кроссоверах.

6-цилиндровые двигатели


Такие двигатели устанавливаются, как правило, на бизнес-классе и выше, а также на кроссоверах и внедорожниках. Но это не единственные их плюсы. В силу конструктивных особенностей, 6 цилиндров более сбалансированные, поэтому и тихие.

Впрочем, они не без минусов. Такие моторы больше, поэтому и тяжелее. У них выше расход топлива, и, самое главное, они дороже, в том числе и в обслуживании. Ведь им требуется больше расходных материалов и технических жидкостей.

Так какой двигатель выбрать?

При выборе двигателя многое зависит от условий эксплуатации и стиля езды. Если вы не фанат динамичной езды и к тому же считаете деньги, то 4-цилиндровый мотор – ваш вариант. Он годится практически для любых условий. 6-цилиндровый двигатели подойдут для более активной езды, тем, кто ездят с полной нагрузкой или прицепом. Главное, подобрать то, что нужно именно вам. Тогда и автомобиль, и его двигатель вас точно порадуют.

Что в автомобиле означает объём двигателя — 1,2 л, 1,4 л, 1,6 л и т.д.?

Литраж двигателя в значительной степени отражает его мощность и иные рабочие параметры.

И, для начала мы должны определится, что — 1 литр = 1000 куб.см (кубические сантиметры или см3).

Итак, автомобиль с двигателем 1,2л, будет иметь объём:

Аналогично, возьмём автомобиль с объемом двигателя 1,4 л, соответственно объем 1400 куб.см и так далее.

Рабочий объём двигателя, равен сумме рабочих объёмов всех цилиндров двигателя, так что если автомобиль с объемом 1,2 л имеет 4-цилиндровый двигатель, это означает, что объем каждого цилиндра составляет 1200 ÷ 4 = 300 куб. см.

Объем цилиндра – V, определяется по формуле:

где D2 — диаметр цилиндра в квадрате, а h — длина хода цилиндра.

Таким образом, когда вы вычисляете объем каждого цилиндра 4-цилиндрового автомобиля объемом 1200 куб. см, используя вышеприведенную формулу, измерив диаметр и ход, вы в конечном итоге получаете 300 куб. см или чуть больше, но очень близко к 300 см3, так как число π — число не абсолютное.

Теперь, о технической части :

В общем, производительность двигателя (мощность, крутящий момент, ускорение и т. д.), в полной мере зависят от того, сколько топлива он может сжечь, когда поршень внутри цилиндра совершает возвратно-поступательные движения; то есть, когда он движется от самой верхней точки цилиндра, называемой верхней мертвой точкой, к самой нижней точке цилиндра, называемой нижней мертвой точкой.

Но, тут есть одна загвоздка!

Вы не можете добавлять бесконечное количество топлива, потому что вам нужен воздух, чтобы в полном объёме сжечь это топливо, а недогоревшее не отправлялось в выхлопную трубу и не детонировало, там.

Из этого следует, что для получения большей производительности, вам нужно сжигать большее количество топлива, а для того, чтобы сжигать больше топлива, необходимо всасывать много воздуха в этот цилиндр.

Самый простой способ, это воплотить, — иметь цилиндр большей вместимости, который будет вмещать больший объём воздуха, и таким образом, сможет сжигать больше топлива, обеспечивая лучшую производительность.

Однако следует помнить, что больший двигатель также означает, что он будет менее экономичным.

Поскольку он должен будет сжигать определенное количество топлива, чтобы продолжать работать, и будет потреблять больше топлива даже на низких скоростях и оборотах двигателя, когда вам действительно не нужны эти характеристики.

Дорогие Друзья! Если данная статья была Вам полезна, то пожалуйста не забудьте проголосовать за неё нажав на кнопку с пальцем вверх, а также подписаться на канал и поделится с друзьями в соцсетях!

И хотя есть и другие способы повышения производительности, увеличение объёма двигателя, — самый простой, и самый примитивный способ, сделать это.

Однако существующие более современные технологии, такие как турбонаддув, или увеличение степени сжатия с использованием прямого впрыска, являются гораздо эффективными методами, поскольку они не оказывают существенного влияния на увеличение расхода топлива.

Так как, благодаря усовершенствованным технологиям, небольшие двигатели стали более мощными, и в то же время экономичными!

Тизер для статьи ДВС

Ремонт автомобиля

В течение уже примерно 100 лет во всём мире статус главного силового агрегата для автомобилей, мотоциклов, комбайнов, тракторов и другого колёсного транспорта удерживает двигатель внутреннего сгорания.

Появившись в нач. 20-го ст. как альтернатива двигателю внешнего сгорания (т. е. паровому), он в 21-м ст. остаётся самым эффективным в экономическом отношении мотором.

Основная особенность каждого ДВС заключается в воспламенении топливной смеси прямо в рабочей камере вместо дополнительного наружного носителя. Во время работы получаемая при сгорании топливной смеси тепловая и химическая энергия трансформируются в работу.

Работа ДВС основывается на эффекте газового расширения, происходящего при сгорании смеси топлива и воздуха под воздействием давления в цилиндрах двигателя..

Классификация ДВС

В ходе эволюции таких двигателей они разделились на несколько типов:

Поршневые ДВС

Для этих моторов свойственно расположение рабочей камеры в цилиндрах и преобразование тепловой энергии в работу с помощью механизма из кривошипов и шатуна. Этот механизм передаёт двигательную энергию на коленвал.

Существует деление поршневых двигателей:

  • на карбюраторные (с формированием смеси воздуха с топливом внутри карбюратора, дальнейшим впрыскиванием внутрь цилиндра и воспламенении в нём от искры, создаваемой свечой зажигания):
  • инжекторные, с подачей смеси непосредственно в коллектор впуска посредством форсунки под контролем управляющего блока на электронике, и тоже воспламенением от свечи:
  • дизельные, где смесь воздуха и топлива воспламеняется при отсутствии свечи, от сжимания воздуха, нагревающегося от давления и температуры, которая превышает температуру горения, тогда как впрыск топлива внутрь цилиндров происходит посредством форсунок.

Роторно-поршневые ДВС

В таких двигателях тепловая энергия преобразуется в работу путём вращения ротора, который имеет специальные профиль и форму. Его вращают выхлопные газы.

Газотурбинные ДВС

Эти моторы отличаются тем, что тепловая энергия в них трансформируется в работу через роторное вращение. При этом имеет специальные лопатки клиновидной формы. Именно он движет турбинный вал.

Самые надёжные, неприхотливые и экономичные в вопросах расходования горючего и потребности в постоянном техническом обслуживании, — моторы поршневого типа.

По предназначению

  • главные ДВС (к ним относятся, в частности, агрегаты в тракторах, машинах, а также самоходные шасси)
  • ДВС вспомогательного назначения (служащие пусковыми устройствами для главных двигателей — дизелей).

По принципу функционирования

ДВС бывают дизельными и карбюраторными.

Карбюраторные двигатели. Топливно-воздушная смесь в них образуется в карбюраторе, которая воспламеняется от энергии электрического разряда.

В дизельных двигателях рабочая смесь получается непосредственно внутри цилиндров. Это называют внутренним смесеобразованием. Воспламенение топливной смеси происходит от высокой температуры воздуха, находящегося под высоким давлением в рабочей камере цилиндра.

По способу осуществления рабочего цикла

ДВС делятся на четырехтактные и двухтактные.

Для четырехтактных двигателей характерно последовательное чередование тактов впуска, сжатия, рабочего хода и выпуска. Это происходит в течение четырех ходов поршня и двух оборотов коленчатого вала.

У двухтактных двигателей весь процесс протекает за два такта. Поэтому рабочий цикл у них протекает за два хода поршня и один оборот коленчатого вала.

По виду применяемого топлива

ДВС разделяются на:

  • работающие на жидком топливе (дизельном, бензине)
  • -работающие на газообразном топливе (генераторный, природный и другие газы).

По числу цилиндров

  • одноцилиндровые (например, П-350)
  • многоцилиндровые (двух-, трех-, четырех-, шести-, восьми-, двенадцати- и шестнадцати-цилиндровые). Трех-, двенадцати- и шестнадцати-цилиндровые двигатели применяются редко.

По расположению цилиндров

По назначению

По назначению двигатели делятся на:

  • стационарные промышленного назначения —для установок на электростанциях, насосных станциях и т. д.;
  • наземно-транспортные — тепловозные, автомобильные, тракторные, двигатели дорожных и транспортно-погрузочных машин и т. п.;
  • судовые — главные двигатели (реверсивные и нереверсивные), вспомогательные (для привода вспомогательных механизмов судовой силовой установки);
  • авиационные.

Устройство двигателя внутреннего сгорания

Корпус двигателя объединяет в единый организм:

При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания.

При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.

Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное вращение коленчатого вала.

Вспомогательные системы двигателя внутреннего сгорания

Система зажигания

Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры, воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:

  • Источник питания . Во время запуска двигателя таковым является аккумуляторная батарея [ 1 ] , а во время его работы — генератор [ 2 ] .
  • Включатель, или замок зажигания [ 3 ] . Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
  • Накопитель энергии. Катушка [ 4 ] , или автотрансформатор — узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
  • Распределитель зажигания (трамблёр) [ 5 ] . Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам [6] каждого из цилиндров.

Впускная система

Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра.

Топливная система

Система смазки

Предназначение системы смазки ДВС — уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла; удаление продуктов нагара и износа; защита металла от коррозии.

Выхлопная система

Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора.

Система охлаждения

Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя — встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для отвода излишнего тепла у мотора и снижения тепловых нагрузок на его детали.

Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.

На этом краткое описание основных узлов и механизмов двигателя внутреннего сгорания заканчиваю. К более подробному описанию систем ДВС вернусь в следующих публикациях.




Статья эволюция развития автомобильных двигателей с начала 90-х годов вызвала интерес, и сильное обсуждение преобразований в двигателестроении. Эта статья будет ее продолжением без временных рамок, но с одним общим условием — все представленные примеры повысили надежность, и ряд других характеристик ДВС в лучшую сторону.

2 ДВС в одном автомобиле (Полный привод без сложной трансмиссии)

Обычно перед инженерами стоит непростой выбор — какой привод выбрать? Идеальным решением конечно будет полный привод, но помимо проблем с развесовкой по осям тут всплывают и дополнительные сложности из за трансмиссии. Простым решением проблемы может служить решение установить два двигателя в автомобиль.

Первые серийные 2-х моторные автомобили появились еще в 1935-ом году.

Число 1200 отображало суммарный объем двух двухтактных моторов, а мощность до 36 л.с. Из оригинальных решений кроме моторов стоит отметить два запасных колеса расположенных по бортам между передней и задней осью. Такое решение позволяло машине передвигаться по бездорожью без риска повредить днище.

Серийный выпуск модели 1200G продолжался до 43-го года, но и после производство продолжилось уже для нужд других стран (Австрия, Турция, Финляндия, Румыния, Болгария, Дания).

Этот автомобиль созданный на базе легендарной малолитражки Citroen 2CV стал результатом борьбы за нефтяные контракты в Африке. Простое решение с двумя моторами понравилось заказчикам и в результате в период с 1960 по 1966 год было построено 692 Citroen Sahara. Возросшая мощность и выбор между 3 типами привода на машине были высоко оценены и… сейчас цена этих раритетов одна из самых высоких среди 2CV (от 100 000$).

Кроме этих двух серийных машин были и другие двухмоторные автомобили.



Mini Cooper Twini.



VW Golf II Pikes Peak



VW Scirocco 280/4



MTM TT Bimoto


Не стабильный на лосином тесте MB A-Class был проблемой для имиджа марки.

В А38 установили два двигателя от А190 общей мощностью 254 л. с. и моментом 360 Нм. С помощью такой силовой установки А38 стал набирать 100 км/ч всего за 5,7 с, а максимальная скорость достигла 230 км/ч. Кроме того, спецы AMG уменьшили клиренс на 10 мм.

Интересно, что задний двигатель запускается отдельно от переднего с помощью специального переключателя, встроенного в блок управления стеклоподъемниками.

2 турбины для ДВС (всего несколько десятилетий и уже стандартное решение)

Две турбины на автомобиле сейчас уже не вызывают удивления (некоторые машины уже имеют и больше), но по прежнему с точки зрения надежности это одно из наиболее приемлемых решений. Аналоги решения проблемы инерционности турбины вроде Variable-Nozzle Turbine и электро-турбины пока не настолько простое решение, а часто даже не всегда необходимое.

Преимущества двух турбин в виде уменьшения времени турбо-задержки, увеличения мощности и экономичности в широком диапазоне оборотов двигателя хорошо отработаны на ДВС абсолютно разного назначения и объема.

Не зря многие автомобилисты сравнивают мотор с сердцем. Процессы внутри ДВС во многом схожи с пульсирующим органом, так как тоже состоят из целого ряда пульсаций.

В процессе работы двигателя во впускном коллекторе так же возникают пульсации из за цикличности процесса всасывания воздуха и выпуска отработавших газов. При определенном резонансе движения волн воздуха внутри коллектора это может даже помочь наполнению цилиндра, но проблема в том что этот процесс работает только на определенном диапазоне оборотов. Все остальные пульсации выше или ниже этой планки вредят процессу смесеобразования в ДВС.

Впуск переменной длины сейчас применяется как в дизельных, так и бензиновых двигателях. Даже на ВАЗ такой делали. В надувных двигателях впускной коллектор переменной длины не используется, т.к. необходимый объем воздуха в камере сгорания обеспечивается механическим нагнетателем или турбокомпрессором.

От 2 клапанов к 4-м (удвоение)

Количеством клапанов на цилиндр сейчас мало кого удивишь, а тем не менее этот показатель когда то вызывал интерес у водителей 90-х. Как всякая новая технология в те времена она обросла целым рядом мифов, которые изжили себя уже в наше время (конечно представить себе удвоение движущихся деталей без сопутствующих проблем сложно, но по факту вышло именно так).

Увеличение количества клапанов позволяет снизить массу каждого из них, а значит, клапаны могут двигаться быстрее, создавая меньше нагрузок на пружину и седло. Так что, как ни странно, кажущийся на первый взгляд более сложным двигатель в целом был надежнее аналогичного 2-х клапанного.

2 распределительных вала (DOHC)


Так переделка ГБЦ с 8 клапанной в 16-ти уже сейчас не представляет особых проблем.

2х рядная цепь ГРМ


После внедрения DOHC стал закономерный вопрос — чем приводить в движение распределительные валы в ГБЦ? Так как раньше привод осуществлялся толкателями (что и было причиной ограничения максимальных оборотов двигателя), а сейчас подобный метод свел бы в ноль все преимущества двух распредвалов и многоклапанности. Выход был простой — либо ремнем, либо цепью, и именно выбор цепи в данном случае с точки зрения надежности самый оптимальный.

Наиболее надежным приводом до сих пор считается двухрядная цепь. Сроки эксплуатации цепи совпадают с сроками службы самого двигателя, а двухрядная по понятным причинам еще и более износоустойчива в процессе работы. С временем правда необходимость в высокой надежности отпала, и на данный момент ремни ГРМ и менее надежная однорядная цепь более популярный вариант.

2-х массовый маховик


Словосочетание двухмассовый маховик на первый взгляд все же не подпадает под определение дублирования, но как и впуск переменной длины по сути является объединением двух противоречий.

Аббревиатуры ДММ (двухмассовый маховик), ZMS (Zweimassenschwungrad) и DMF (dual mass flywheel) обозначают на трех языках одно и то же изделие – маховик с двумя подвижными друг относительно друга корпусами из стали на одной оси. Внутри одного из корпусов находится сердце механизма – демпфирующий механизм и подшипник.

Основа идеи разделения масс — избавление от резонанса возникающего на определенных оборотах двигателя, и необходимость избавления от демпферов крутильных колебаний для которых просто не оставалось места. Резонанс так или иначе все равно проявляется на моторах с облегченным и обычным маховиком, если нет гасителей этих колебаний. Перенос функции демпфирования крутильных колебаний в двухмассовый маховик позволил избавиться не только от опасности резонанса в двигателе, но и исключил эту же проблему в трансмиссии.

Фактически понятие надежность тут стоит воспринимать не как фактор повышенного ресурса маховика, а как влияние использования ДММ на общую надежность мотора и трансмиссии.

2 шатуна на круглый поршень — это лучше чем 2 шатуна на овальный как у Хонды …

Очень странной конструкцией с двумя шатунами в ДВС удивляли дважды.

В 1977 году Хонда решила кардинально изменить свое положение в мотоспорте установив на мотоцикл четырехтактный двигатель с 8 клапанами на цилиндр, и двумя шатунами. Это решение было очень сложным технически, но чего не сделаешь для победы в гонках?

Итог испытаний показал что выигрыша эта конструкция не давала и постоянно ломалась.

Вторым удачным двухшатунным ДВС стал двухцилиндровый турбодизель на мотоцикле NEANDER 1400 TURBODIESEL.


Количество инноваций в моторе огромно, так как изначально планировалось делать его для выступлений на MotoGP, но дальше что то пошло не так… и получился уникальный круизер на солярке. Упрощённо это звучит так – в двух цилиндрах по поршню, который передает момент на шатуны, соединенные с двумя коленвалами. Коленвалы соеденены шестернями и вращаются в разные стороны. Такой конструкторский порыв позволил в результате уравновесить боковые силы действующие на поршень и устанавливать поршни без “юбок”.

Главная проблема моторов – потери на трение и износ в данном случае решена методом уравновешивания, что позволило уже на эксперементальной конструкции для MotoGP (на бензине) достичь 12 тыс. Оборотов. Поэтому 4 – 4. 5 тыс. Оборотов для дизеля не оказывают негативного воздействия на мотор.

Мотор с встречным движением поршней или двигатель с противоположно-движущемся поршнями (ПДП) вопреки его современному маркетинговому прототипу все таки не только существовал, но и успешно эксплуатируется до сих пор.

Двигатели этой схемы применяются в тепловозах, танках, авиации и судостроении.
Первый ПДП был построен еще в 1900 году компанией Gobron-Brillié, а уже в 1903 году автомобиль с этим мотором достиг скорости 100 миль в час! Далее немного переделанная кострукция французов уже использовалась в авиации фирмой Юнкерс.

Дизельный вариант ПДП был построен в России инженером Р.А. Корейво, и запатентован в 1907 году во Франции.

Читайте также: