Схема can шины пежо 206

Добавил пользователь Алексей Ф.
Обновлено: 19.09.2024

На автомобиле применены несколько сетевых шин обмена данными CAN (Controller Area Network) между блоками (модулями) управления различных систем и контроллерами исполнительных устройств автомобиля.

Отдельные блоки управления объединены друг с другом в общую сеть и могут обмениваться данными.

Сигнал с чувствительного элемента (датчика) поступает в ближайший блок управления, который обрабатывает его и передаёт на шину данных CAN.

Любой блок управления, подключённый к шине данных CAN, может считывать этот сигнал, вычислять на его основе значение управляющего воздействия и управлять исполнительным сервомеханизмом.


Обмен данными по шине CAN

При обычном кабельном соединении электрических и электронных устройств осуществляется прямое соединение каждого блока управления со всеми датчиками и исполнительными элементами, от которых он получает результаты измерений или которыми управляет.

Усложнение системы управления приводит к чрезмерной длине или многочисленности кабельных линий.

Шина данных CAN состоит из двужильного провода, выполненного в виде витой пары. К этой линии подключены все устройства (блоки управления устройствами).

Передача данных осуществляется с дублированием по обоим проводам, причём логические уровни шины данных имеют зеркальное отображение (то есть, если по одному проводу передаётся уровень логического нуля, то по другому проводу передаётся уровень логической единицы, и наоборот).

Двухпроводная схема передачи используется по двум причинам: для выявления ошибок и как основа надёжности.

Если пик напряжения возникает только на одном проводе (например, вследствие проблем с ЭМС (электромагнитная совместимость)), то блоки-приёмники могут идентифицировать это как ошибку и проигнорировать этот пик напряжения.

Если же произойдёт короткое замыкание или обрыв одного из двух проводов шины данных CAN, то благодаря интегрированной программно-аппаратной системе надёжности произойдёт переключение в режим работы по однопроводной схеме. Повреждённая передающая линия использоваться не будет.

В этом случае блок управления, который может предоставить запрашиваемый пакет данных, реагирует на данный запрос.

Формат пакета данных


13.35 Цифровая шина данных CAN Peugeot 206

В обычном режиме передачи пакеты данных имеют следующие конфигурации блоков (фреймы):

  • стандартный формат;
  • расширенный формат.

В настоящее время используется стандартный формат.

• Control Field (управляющие биты): Поле управления (6 бит) содержит IDE-бит (Identifier Extension Bit) для распознавания стандартного и расширенного формата, резервный бит для последующих расширений и - в последних 4 битах - количество байтов данных, заложенных в Data Field (поле данных).

• CRC Field (контрольное поле): Поле CRC (Cyclic-Redundancy-Check Field) содержит 16 бит и служит для контрольного распознавания ошибок при передаче.

• End of Frame (конец фрейма): Маркирует конец пакета данных.

• Intermission (интервал): Интервал между двумя пакетами данных. Интервал должен составлять не менее 3 битов. После этого любой блок управления может передавать следующий пакет данных.

Для обработки данных в режиме реального времени должна быть обеспечена возможность их быстрой передачи.

Угол опережения зажигания, например, имеет высший приоритет, значения пробуксовки - средний, а температура наружного воздуха - низший приоритет.

Идентификатор, соответствующий меньшему двоичному числу, имеет более высокий приоритет, и наоборот.


13.35 Цифровая шина данных CAN Peugeot 206

Если передаваемый первым блоком-передатчиком рецессивный бит перезаписывается доминантным битом другого блока-передатчика, то первый блок-передатчик теряет своё право передачи (арбитраж) и становится блоком-приёмником.

Первый блок управления (N I) утрачивает арбитраж с 3-го бита.

Третий блок управления (N III) утрачивает арбитраж с 7-го бита.

Механизмы на уровне Data Frame

Этот механизм проверяет структуру передаваемого блока (фрейма), то есть перепроверяются битовые поля с заданным фиксированным форматом и длина фрейма.

Распознанные функцией Frame Check ошибки маркируются как ошибки формата.

Механизмы на уровне битов

После каждой последовательности из 5 одинаковых битов блок-передатчик добавляет в поток битов один бит с противоположной полярностью.

Для разных областей управления применяются различные шины CAN. Они отличаются друг от друга скоростью передачи данных.


На типе 169 устанавливается блок центрального интерфейса (ZGW). Назначением этого блока является управление обменом данными между шинами CAN. Одновременно он выполняет диагностику различных блоков управления подключенных к шинам CAN.

Центральный интерфейс (N93) находится на передней стойке в ногах у водителя.


Функции блока управления Центрального интерфейса ZGW (N93)


CAN Распределитель потенциалов

X30/4 Штекерный разъем распределителя потенциалов (CAN) справа

Расположен в ногах пассажира под вещевым ящиком справа от блока SAM (N10)


X63/4 Штекерное соединение адаптера шины CAN, 2-полюсное

Штекерное соединение находится в ногах пассажира на передней стойке


X30/7 Штекерный разъем распределителя потенциалов (CAN)

Расположен в ногах пассажира под вещевым ящиком слева от блока SAM (N10)


Распределитель потенциалов CAN является соединением между шинами CAN

Диагностический разъем X11/4, как и ранее, расположен в ногах у водителя.

13.35 Цифровая шина данных CAN

На автомобиле применены несколько сетевых шин обмена данными CAN (Controller Area Network) между блоками (модулями) управления различных систем и контроллерами исполнительных устройств автомобиля.

Отдельные блоки управления объединены друг с другом в общую сеть и могут обмениваться данными.

Сигнал с чувствительного элемента (датчика) поступает в ближайший блок управления, который обрабатывает его и передаёт на шину данных CAN.

Любой блок управления, подключённый к шине данных CAN, может считывать этот сигнал, вычислять на его основе значение управляющего воздействия и управлять исполнительным сервомеханизмом.

Обмен данными по шине CAN

При обычном кабельном соединении электрических и электронных устройств осуществляется прямое соединение каждого блока управления со всеми датчиками и исполнительными элементами, от которых он получает результаты измерений или которыми управляет.

Усложнение системы управления приводит к чрезмерной длине или многочисленности кабельных линий.

По сравнению со стандартной кабельной разводкой шина данных обеспечивает:

Шина данных CAN состоит из двужильного провода, выполненного в виде витой пары. К этой линии подключены все устройства (блоки управления устройствами).

Передача данных осуществляется с дублированием по обоим проводам, причём логические уровни шины данных имеют зеркальное отображение (то есть, если по одному проводу передаётся уровень логического нуля, то по другому проводу передаётся уровень логической единицы, и наоборот).

Двухпроводная схема передачи используется по двум причинам: для выявления ошибок и как основа надёжности.

Если пик напряжения возникает только на одном проводе (например, вследствие проблем с ЭМС (электромагнитная совместимость)), то блоки-приёмники могут идентифицировать это как ошибку и проигнорировать этот пик напряжения.

Если же произойдёт короткое замыкание или обрыв одного из двух проводов шины данных CAN, то благодаря интегрированной программно-аппаратной системе надёжности произойдёт переключение в режим работы по однопроводной схеме. Повреждённая передающая линия использоваться не будет.

В этом случае блок управления, который может предоставить запрашиваемый пакет данных, реагирует на данный запрос.


В обычном режиме передачи пакеты данных имеют следующие конфигурации блоков (фреймы):

  • стандартный формат;
  • расширенный формат.

В настоящее время используется стандартный формат.

• Control Field (управляющие биты): Поле управления (6 бит) содержит IDE-бит (Identifier Extension Bit) для распознавания стандартного и расширенного формата, резервный бит для последующих расширений и — в последних 4 битах — количество байтов данных, заложенных в Data Field (поле данных).

• CRC Field (контрольное поле): Поле CRC (Cyclic-Redundancy-Check Field) содержит 16 бит и служит для контрольного распознавания ошибок при передаче.

• End of Frame (конец фрейма): Маркирует конец пакета данных.

• Intermission (интервал): Интервал между двумя пакетами данных. Интервал должен составлять не менее 3 битов. После этого любой блок управления может передавать следующий пакет данных.

Для обработки данных в режиме реального времени должна быть обеспечена возможность их быстрой передачи.

Угол опережения зажигания, например, имеет высший приоритет, значения пробуксовки — средний, а температура наружного воздуха — низший приоритет.

Идентификатор, соответствующий меньшему двоичному числу, имеет более высокий приоритет, и наоборот.


Если передаваемый первым блоком-передатчиком рецессивный бит перезаписывается доминантным битом другого блока-передатчика, то первый блок-передатчик теряет своё право передачи (арбитраж) и становится блоком-приёмником.

Первый блок управления (N I) утрачивает арбитраж с 3-го бита.

Третий блок управления (N III) утрачивает арбитраж с 7-го бита.

Помехи могут приводить к ошибкам в передаче данных. Такие, возникающие при передаче, ошибки следует распознавать и устранять. Протокол шины данных CAN различает два уровня распознавания ошибок:

Механизмы на уровне Data Frame

Этот механизм проверяет структуру передаваемого блока (фрейма), то есть перепроверяются битовые поля с заданным фиксированным форматом и длина фрейма.

Распознанные функцией Frame Check ошибки маркируются как ошибки формата.

Механизмы на уровне битов

После каждой последовательности из 5 одинаковых битов блок-передатчик добавляет в поток битов один бит с противоположной полярностью.

Для разных областей управления применяются различные шины CAN. Они отличаются друг от друга скоростью передачи данных.

На автомобиле применены несколько сетевых шин обмена данными CAN (Controller Area Network) между блоками (модулями) управления различных систем и контроллерами исполнительных устройств автомобиля.

Отдельные блоки управления объединены друг с другом в общую сеть и могут обмениваться данными.

Сигнал с чувствительного элемента (датчика) поступает в ближайший блок управления, который обрабатывает его и передаёт на шину данных CAN.

Любой блок управления, подключённый к шине данных CAN, может считывать этот сигнал, вычислять на его основе значение управляющего воздействия и управлять исполнительным сервомеханизмом.


Обмен данными по шине CAN

При обычном кабельном соединении электрических и электронных устройств осуществляется прямое соединение каждого блока управления со всеми датчиками и исполнительными элементами, от которых он получает результаты измерений или которыми управляет.

Усложнение системы управления приводит к чрезмерной длине или многочисленности кабельных линий.

Шина данных CAN состоит из двужильного провода, выполненного в виде витой пары. К этой линии подключены все устройства (блоки управления устройствами).

Передача данных осуществляется с дублированием по обоим проводам, причём логические уровни шины данных имеют зеркальное отображение (то есть, если по одному проводу передаётся уровень логического нуля, то по другому проводу передаётся уровень логической единицы, и наоборот).

Двухпроводная схема передачи используется по двум причинам: для выявления ошибок и как основа надёжности.

Если пик напряжения возникает только на одном проводе (например, вследствие проблем с ЭМС (электромагнитная совместимость)), то блоки-приёмники могут идентифицировать это как ошибку и проигнорировать этот пик напряжения.

Если же произойдёт короткое замыкание или обрыв одного из двух проводов шины данных CAN, то благодаря интегрированной программно-аппаратной системе надёжности произойдёт переключение в режим работы по однопроводной схеме. Повреждённая передающая линия использоваться не будет.

В этом случае блок управления, который может предоставить запрашиваемый пакет данных, реагирует на данный запрос.

Формат пакета данных


13.35 Цифровая шина данных CAN Peugeot 206

В обычном режиме передачи пакеты данных имеют следующие конфигурации блоков (фреймы):

  • стандартный формат;
  • расширенный формат.

В настоящее время используется стандартный формат.

• Control Field (управляющие биты): Поле управления (6 бит) содержит IDE-бит (Identifier Extension Bit) для распознавания стандартного и расширенного формата, резервный бит для последующих расширений и - в последних 4 битах - количество байтов данных, заложенных в Data Field (поле данных).

• CRC Field (контрольное поле): Поле CRC (Cyclic-Redundancy-Check Field) содержит 16 бит и служит для контрольного распознавания ошибок при передаче.

• End of Frame (конец фрейма): Маркирует конец пакета данных.

• Intermission (интервал): Интервал между двумя пакетами данных. Интервал должен составлять не менее 3 битов. После этого любой блок управления может передавать следующий пакет данных.

Для обработки данных в режиме реального времени должна быть обеспечена возможность их быстрой передачи.

Угол опережения зажигания, например, имеет высший приоритет, значения пробуксовки - средний, а температура наружного воздуха - низший приоритет.

Идентификатор, соответствующий меньшему двоичному числу, имеет более высокий приоритет, и наоборот.


13.35 Цифровая шина данных CAN Peugeot 206

Если передаваемый первым блоком-передатчиком рецессивный бит перезаписывается доминантным битом другого блока-передатчика, то первый блок-передатчик теряет своё право передачи (арбитраж) и становится блоком-приёмником.

Первый блок управления (N I) утрачивает арбитраж с 3-го бита.

Третий блок управления (N III) утрачивает арбитраж с 7-го бита.

Механизмы на уровне Data Frame

Этот механизм проверяет структуру передаваемого блока (фрейма), то есть перепроверяются битовые поля с заданным фиксированным форматом и длина фрейма.

Распознанные функцией Frame Check ошибки маркируются как ошибки формата.

Механизмы на уровне битов

После каждой последовательности из 5 одинаковых битов блок-передатчик добавляет в поток битов один бит с противоположной полярностью.

Для разных областей управления применяются различные шины CAN. Они отличаются друг от друга скоростью передачи данных.

CAN С (Привод и ходовая часть)
К12 — Выключатель зажигания (EZS)
К13 — Приборная доска (KI)
К24 — Электронное управление коробки передач (EGS или KGS)
К25 — Блок управления двигателя (MSG)
К26 — Электронный блок селектора передач (EMW)
К27 — Распределитель CAN Класс-C RBA левый
К28 — Электронная противозаносная система (ESP)

Не включённые в сеть SG
К29 — Автоматическая регулировка дальности света (ALWR)
К30 — TV-тюнер

D2B — (Аудио/Связь/Навигация)
Оптоволоконный кабель
К14 — COMMAND/аудио 10/аудио 30/аудио 30 APS
К31 — Телефонная система (MINNA, аварийный вызов)
К32 — Устройство голосового управления Linguatronic (SBS)
К33 — Контроллер мобильного телефона (интерфейс)
К34 — Усилитель звука
К35 — CD-чейнджер

Показаны не все

A2 — Радиоприёмник или магнитола
A2/6 — CD чейнджер
A40/3 — Дисплей и блок управления функционирования системы COMAND

Отдельные блоки управления объединены друг с другом в общую сеть и могут обмениваться данными.

Сигнал с чувствительного элемента (датчика) поступает в ближайший блок управления, который обрабатывает его и передаёт на шину данных CAN.

Любой блок управления, подключённый к шине данных CAN, может считывать этот сигнал, вычислять на его основе значение управляющего воздействия и управлять исполнительным сервомеханизмом.

Преимущества

При обычном кабельном соединении электрических и электронных устройств осуществляется прямое соединение каждого блока управления со всеми датчиками и исполнительными элементами, от которых он получает результаты измерений или которыми управляет.

Усложнение системы управления приводит к чрезмерной длине или многочисленности кабельных линий.

По сравнению со стандартной кабельной разводкой шина данных обеспечивает:

Шина данных CAN состоит из двужильного провода, выполненного в виде витой пары. К этой линии подключены все устройства (блоки управления устройствами).

Передача данных осуществляется с дублированием по обоим проводам, причём логические уровни шины данных имеют зеркальное отображение (то есть, если по одному проводу передаётся уровень логического нуля (0), то по другому проводу передаётся уровень логической единицы (1), и наоборот).

Двухпроводная схема передачи используется по двум причинам: для выявления ошибок и как основа надёжности.

Если пик напряжения возникает только на одном проводе (например, вследствие проблем с ЭМС (электромагнитная совместимость)), то блоки-приёмники могут идентифицировать это как ошибку и проигнорировать этот пик напряжения.

Если же произойдёт короткое замыкание или обрыв одного из двух проводов шины данных CAN, то благодаря интегрированной программно-аппаратной системе надёжности произойдёт переключение в режим работы по однопроводной схеме. Повреждённая передающая линия использоваться не будет.

В этом случае блок управления, который может предоставить запрашиваемый пакет данных, реагирует на данный запрос.

Формат пакета данных

В обычном режиме передачи пакеты данных имеют следующие конфигурации блоков (фреймы):

- стандартный формат;
- расширенный формат.

В настоящее время DaimlerChrysler использует только стандартный формат.

Приоритеты

Для обработки данных в режиме реального времени должна быть обеспечена возможность их быстрой передачи.

Угол опережения зажигания, например, имеет высший приоритет, значения пробуксовки - средний, а температура наружного воздуха - низший приоритет.

Идентификатор, соответствующий меньшему двоичному числу, имеет более высокий приоритет, и наоборот.

Если передаваемый первым блоком-передатчиком рецессивный бит перезаписывается доминантным битом другого блока-передатчика, то первый блок-передатчик теряет своё право передачи (арбитраж) и становится блоком-приёмником.

Первый блок управления (N I) утрачивает арбитраж с 3-го бита.

Третий блок управления (N III) утрачивает арбитраж с 7-го бита.

Распознавание ошибок

Помехи могут приводить к ошибкам в передаче данных. Такие, возникающие при передаче, ошибки следует распознавать и устранять. Протокол шины данных CAN различает два уровня распознавания ошибок:

Механизмы на уровне Data Frame

Frame Check

Этот механизм проверяет структуру передаваемого блока (фрейма), то есть перепроверяются битовые поля с заданным фиксированным форматом и длина фрейма.

Распознанные функцией Frame Check ошибки маркируются как ошибки формата.

После каждой последовательности из 5 одинаковых битов блок-передатчик добавляет в поток битов один бит с противоположной полярностью.

Типы шин CAN

Для разных областей управления применяются различные шины CAN. Они отличаются друг от друга скоростью передачи данных.

Интерфейс двух шин данных CAN расположен в блоке управления электронного замка зажигания (N73). Этот блок управления также представляет интерфейс между блоками управления шины данных CAN и диагностическим разъемом DLC (X11/4).

При замене новый блок управления необходимо кодировать при помощи диагностического прибора.

Шина данных CAN двигательного отсека активирована только при включённом зажигании.

К шине CAN-С подключено 7 блоков управления.

Поэтому шина данных CAN салона должна находиться в режиме функциональной готовности даже при выключенном зажигании, это значит, что возможность передачи пакетов данных должна быть обеспечена даже при выключенном зажигании.

С целью максимально возможного снижения потребляемого тока покоя, шина данных CAN, при отсутствии необходимых к передаче пакетов данных, переходит в режим пассивного ожидания, и активируется снова только при следующем доступе к ней.

Отдельные блоки управления объединены друг с другом в общую сеть и могут обмениваться данными.

Сигнал с чувствительного элемента (датчика) поступает в ближайший блок управления, который обрабатывает его и передаёт на шину данных CAN.

Любой блок управления, подключённый к шине данных CAN, может считывать этот сигнал, вычислять на его основе значение управляющего воздействия и управлять исполнительным сервомеханизмом.

При обычном кабельном соединении электрических и электронных устройств осуществляется прямое соединение каждого блока управления со всеми датчиками и исполнительными элементами, от которых он получает результаты измерений или которыми управляет.

Усложнение системы управления приводит к чрезмерной длине или многочисленности кабельных линий.

По сравнению со стандартной кабельной разводкой шина данных обеспечивает:

Передача данных осуществляется с дублированием по обоим проводам, причём логические уровни шины данных имеют зеркальное отображение (то есть, если по одному проводу передаётся уровень логического нуля (0), то по другому проводу передаётся уровень логической единицы (1), и наоборот).

Двухпроводная схема передачи используется по двум причинам: для выявления ошибок и как основа надёжности.

Если пик напряжения возникает только на одном проводе (например, вследствие проблем с ЭМС (электромагнитная совместимость)), то блоки-приёмники могут идентифицировать это как ошибку и проигнорировать этот пик напряжения.

Если же произойдёт короткое замыкание или обрыв одного из двух проводов шины данных CAN, то благодаря интегрированной программно-аппаратной системе надёжности произойдёт переключение в режим работы по однопроводной схеме. Повреждённая передающая линия использоваться не будет.

В этом случае блок управления, который может предоставить запрашиваемый пакет данных, реагирует на данный запрос.

Формат пакета данных

В обычном режиме передачи пакеты данных имеют следующие конфигурации блоков (фреймы):

- стандартный формат;
- расширенный формат.

В настоящее время DaimlerChrysler использует только стандартный формат.

Приоритеты

Для обработки данных в режиме реального времени должна быть обеспечена возможность их быстрой передачи.

Угол опережения зажигания, например, имеет высший приоритет, значения пробуксовки - средний, а температура наружного воздуха - низший приоритет.

Если передаваемый первым блоком-передатчиком рецессивный бит перезаписывается доминантным битом другого блока-передатчика, то первый блок-передатчик теряет своё право передачи (арбитраж) и становится блоком-приёмником.

14.32 Цифровая шина данных CAN Peugeot 206

Первый блок управления (N I) утрачивает арбитраж с 3-го бита.

Третий блок управления (N III) утрачивает арбитраж с 7-го бита.

Помехи могут приводить к ошибкам в передаче данных. Такие, возникающие при передаче, ошибки следует распознавать и устранять.
Протокол шины данных CAN различает два уровня распознавания ошибок:

Механизмы на уровне Data Frame

Этот механизм проверяет структуру передаваемого блока (фрейма), то есть перепроверяются битовые поля с заданным фиксированным форматом и длина фрейма.

Распознанные функцией Frame Check ошибки маркируются как ошибки формата.

Механизмы на уровне битов

После каждой последовательности из 5 одинаковых битов блок-передатчик добавляет в поток битов один бит с противоположной полярностью.

Для разных областей управления применяются различные шины CAN. Они отличаются друг от друга скоростью передачи данных.

В оконечном блоке управления с каждой стороны установлен так называемый согласующий резистор шины данных с сопротивлением 120 Ом, подключённый между обоими проводами шины данных.

Шина данных CAN двигательного отсека активирована только при включённом зажигании.

К шине CAN-С подключено 7 блоков управления.

Некоторые блоки управления, подключённые к шине данных CAN салона, активируются независимо от включения зажигания (например: система единого замка).

Поэтому шина данных CAN салона должна находиться в режиме функциональной готовности даже при выключенном зажигании, это значит, что возможность передачи пакетов данных должна быть обеспечена даже при выключенном зажигании.

С целью максимально возможного снижения потребляемого тока покоя, шина данных CAN, при отсутствии необходимых к передаче пакетов данных, переходит в режим пассивного ожидания, и активируется снова только при следующем доступе к ней.

К шине CAN-В подключено 20 блоков управления.

Элементы сети обмена данными (CAN)

Передний блок регистрации и управления с коробкой предохранителей и реле (SAM/SRB-V)

Задний блок регистрации и управления с коробкой предохранителей и реле (SAM/SRB-H)

Блок управления левого сиденья (SSG)

Блок управления правого сиденья (SSG)

Блок управления передней левой двери (TSG)

Блок управления передней правой двери (TSG)

Блок управления задней левой двери (TSG)

Блок управления задней правой двери (TSG)

Блок управления крыши (DBE)

Верхнее поле управления (OBF)

Нижнее поле управления (UBF)

Электронный стартовый выключатель зажигания (EZS)

Система COMMAND/аудио 10/аудио 30/аудио 30 APS

Прибор сцепного устройства прицепа (AAG)

Блок многофункционального управления для специальных моделей (MSS)

Распределитель CAN-B RBA правый

Распределитель CAN-B RBA левый

Распределитель CAN-B Cockpit

Подушки безопасности со встроенной системой вызова ARMINCA

CAN С (Привод и ходовая часть)

Электронное управление коробки передач (EGS или KGS)

Блок управления двигателя (MSG)

Электронный блок селектора передач (EMW)

Распределитель CAN Класс-C RBA левый

Электронная противозаносная система (ESP)

Не включённые в сеть SG

Автоматическая регулировка дальности света (ALWR)

D2B (Аудио/Связь/Навигация)

Оптоволоконный кабель

COMMAND/аудио 10/аудио 30/аудио 30 APS

Телефонная система (MINNA, аварийный вызов)

Устройство голосового управления Linguatronic (SBS)

Контроллер мобильного телефона (интерфейс)

Показаны не все

Радиоприёмник или магнитола

Дисплей и блок управления функционирования системы COMAND

Блок управления системы голосового управления

Интерфейс D2B для мобильного/встроенного телефона

Приёмопередатчик сотового телефона (CTEL)/системы аварийного вызова TELE AID

Читайте также: